• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-5 of 5

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Maximum a posteriori Threshold Genomic Prediction model for ordinal traits 

Montesinos-López, A.; Gutierrez-Pulido, H.; Montesinos-Lopez, O.A.; Crossa, J. (Genetics Society of America, 2020)
Article
Thumbnail

A multivariate Poisson deep learning model for genomic prediction of count data 

Montesinos-Lopez, O.A.; Montesinos-Lopez, J.C.; Singh, P.K.; Lozano-Ramirez, N.; Barrón-López, A.; Montesinos-Lopez, A.; Crossa, J. (Genetics Society of America, 2020)
Article
Thumbnail

Genomic prediction models for count data 

Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Eskridge, K.; Xinyao He; Juliana, P.; Singh, P.; Crossa, J. (Springer Verlag; American Statistical Association; International Biometrics Society, 2015)
Whole genome prediction models are useful tools for breeders when selecting candidate individuals early in life for rapid genetic gains. However, most prediction models developed so far assume that the response variable ...
Article
Thumbnail

New deep learning genomic-based prediction model for multiple traits with binary, ordinal, and continuous phenotypes 

Montesinos-Lopez, O.A.; Martin-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández Suárez, C.M.; Montesinos-López, A.; Juliana, P.; Singh, R.P. (Genetics Society of America, 2019)
Multiple-trait experiments with mixed phenotypes (binary, ordinal and continuous) are not rare in animal and plant breeding programs. However, there is a lack of statistical models that can exploit the correlation between ...
Article
Thumbnail

An R Package for Bayesian analysis of multi-environment and multi-trait multi-environment data for genome-based prediction 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Luna-Vazquez, F.J.; Toledo, F.H.; Perez-Rodriguez, P.; Lillemo, M.; Crossa, J. (Genetics Society of America, 2019)
Evidence that genomic selection (GS) is a technology that is revolutionizing plant breeding continues to grow. However, it is very well documented that its success strongly depends on statistical models, which are used by ...

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (5)Montesinos-Lopez, Osval Antonio (5)
Montesinos-López, A. (5)
Juliana, P. (2)Pérez-Rodríguez, Paulino (2)Barrón-López, A. (1)Eskridge, K. (1)Gianola, D. (1)Gutierrez-Pulido, H. (1)He, Xinyao (1)... View More
Date Issued
2020 (2)2019 (2)2015 (1)
Type
Article (5)
Agrovoc
BAYESIAN THEORY (3)GENOMICS (2)MARKER-ASSISTED SELECTION (2)MODELS (2)DATA (1)DATA ANALYSIS (1)FORECASTING (1)GENOTYPES (1)MATHEMATICAL MODELS (1)MULTIVARIATE ANALYSIS (1)... View More
Keywords
Genomic Prediction (5)
GenPred (4)Shared Data Resources (4)Genomic Selection (3)Bayesian Analysis (1)Count Data (1)Count Data of Wheat Lines (1)Data Augmentation (1)Deep Learning (1)EM Algorithm (1)... View More


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback