• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 32

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Deep kernel and deep learning for genome-based prediction of single traits in multienvironment breeding trials 

Crossa, J.; Martini, J.W.R.; Gianola, D.; Perez-Rodriguez, P.; Jarquín, D.; JULIANA P.; Montesinos-Lopez, O.A.; Cuevas, J. (Frontiers, 2019)
Presentation
Thumbnail

Importancia da biometria no melhoramento 

Toledo, F.H.; Juliana, P.; Crespo-Herrera, L.A.; Crossa, J.; Burgueño, J. (CIMMYT, 2019)
Article
Thumbnail

A Bayesian genomic multi-output regressor stacking model for predicting multi-trait multi-environment plant breeding data 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Crossa, J.; Cuevas, J.; Montesinos-Lopez, J.C.; Salas Gutiérrez, Z.; Lillemo, M.; Juliana, P.; Singh, R.P. (Genetics Society of America, 2019)
In this paper we propose a Bayesian multi-output regressor stacking (BMORS) model that is a generalization of the multi-trait regressor stacking method. The proposed BMORS model consists of two stages: in the first stage, ...
Article
Thumbnail

Deep kernel for genomic and near infrared predictions in multi-environment breeding trials 

Cuevas, J.; Montesinos-Lopez, O.A.; Juliana, P.; Guzman, C.; Perez-Rodriguez, P.; González-Bucio, J.; Burgueño, J.; Montesinos-Lopez, A.; Crossa, J. (Genetics Society of America, 2019)
Kernel methods are flexible and easy to interpret and have been successfully used in genomic-enabled prediction of various plant species. Kernel methods used in genomic prediction comprise the linear genomic best linear ...
Article
Thumbnail

Joint use of genome, pedigree, and their interaction with environment for predicting the performance of wheat lines in new environments 

Howard, R.; Gianola, D.; Montesinos-Lopez, O.A.; Juliana, P.; Singh, R.P.; Poland, J.A.; Shrestha, S.; Perez-Rodriguez, P.; Crossa, J.; Jarquin, D. (Genetics Society of America, 2019)
Genome-enabled prediction plays an essential role in wheat breeding because it has the potential to increase the rate of genetic gain relative to traditional phenotypic and pedigree-based selection. Since the performance ...
Presentation
Thumbnail

From genebank to field-leveraging genomics to identify and bring novel native variation to breeding pools 

Romero, A.; Hickey, J.M.; Kilian, A.; Buckler, E.; Marshall, D.; Crossa, J.; Petroli, C.D.; Sansaloni, C.P.; Molnar, T.L.; Pixley, K.V.; Wenzl, P.; Sukhwinder-Singh; Burgueño, J.; Chen, C.; Salinas García, G.; Willcox, M.; Saint Pierre, C. (CIMMYT; SAGARPA; CGIAR, 2016)
Potentially valuable genetic variation, the raw material for crop improvement, remains untapped on genebank shelves, at a time when challenges to crop production are unprecedented. Genebanks should NOT be museums. They ...
Presentation
Thumbnail

Implementation of genomic selection in the CIMMYT Global Wheat Program, learnings from the past 10 years 

Dreisigacker, S.; Crossa, J.; Perez-Rodriguez, P.; Montesinos-Lopez, O.A.; Rosyara, U.; Juliana, P.; Mondal, S.; Crespo-Herrera, L.A.; Jarquín, D.; Velu, G.; Singh, R.P.; Braun, H.J. (CIMMYT, [2020])
Article
Thumbnail

Evaluation and interpretation of interactions 

Crossa, Jose; Vargas Hernández, M.; Cossani, C.M.; Alvarado, G.; Burgueño, J.; Mathews, K.L.; Reynolds, M.P. (American Society of Agronomy, 2013)
Understanding the factors that define a given interaction is important in agricultural, agronomic, and plant breeding research, where agronomic treatments or genotypes are evaluated under several environmental conditions ...
Article
Thumbnail

Quantitative genetic studies with applications in plant breeding in the omics era 

Jiankang Wang; Crossa, J.; Junyi Gai (Elsevier, 2020)
Article
Thumbnail

A review of deep learning applications for genomic selection 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Perez-Rodriguez, P.; Barrón-López, A.; Martini, J.W.R.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. (BioMed Central, 2021)
  • 1
  • 2
  • 3
  • 4

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (32)
Montesinos-Lopez, Osval Antonio (10)Juliana, P. (9)Pérez-Rodríguez, Paulino (8)Burgueño, J. (7)Singh, R.P. (7)Dreisigacker, S. (6)Jarquin, D. (5)Gianola, D. (4)Montesinos-Lopez, A. (4)... View More
Date Issued
2020 - 2021 (10)2010 - 2019 (19)1998 - 1999 (1)
Type
Article (24)Presentation (5)Book (1)Conference Poster (1)Newsletter / Bulletin (1)
Agrovoc
PLANT BREEDING (32)
MARKER-ASSISTED SELECTION (11)WHEAT (10)GENOMICS (8)GENOTYPE ENVIRONMENT INTERACTION (5)MAIZE (5)PHENOTYPES (4)GENETIC MARKERS (3)SELECTION (3)STATISTICAL METHODS (3)... View More
Keywords
Genomic Selection (4)Deep Learning (3)Genomic Prediction (2)GenPred (2)Shared Data Resources (2)Bayesian Inference (1)Beta-Carotene (1)Beta-Cryptoxanthin (1)Bilinear Interaction Terms (1)Biofortification (1)... View More
Region
Global (1)


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback