• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 19

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Genomic prediction in maize breeding populations with genotyping-by sequencing 

Crossa, J.; Beyene, Y.; Semagn, K.; Perez, P.; Hickey, J.M.; Chen Charles; Campos, G. de los; Burgueño, J.; Windhausen, V.S.; Buckler, E.S.; Jannink, J.L.; Lopez Cruz, M.A.; Babu, R. (Genetics Society of America, 2013)
Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, ...
Article
Thumbnail

Multivariate bayesian analysis of on-farm trials with multiple-trait and multiple-environment data 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Vargas-Hernández, M.; Ortíz-Monasterios, I.; Perez-Rodriguez, P.; Burgueño, J.; Crossa, J. (American Society of Agronomy, 2019)
Article
Thumbnail

A benchmarking between deep learning, support vector machine and bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding 

Montesinos-Lopez, O.A.; Martin-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández Suárez, C.M.; Montesinos-Lopez, A.; Juliana, P.; Singh, R.P. (Genetics Society of America, 2019)
Genomic selection is revolutionizing plant breeding. However, still lacking are better statistical models for ordinal phenotypes to improve the accuracy of the selection of candidate genotypes. For this reason, in this ...
Handbook
Thumbnail

User's guide for spatial analysis of field variety trials using ASREML 

Burgueño, J.; Cadena, A.; Crossa, J.; Bänziger, M.; Gilmour, A.R.; Cullis, B. (CIMMYT, 2000)
This manual describes an approach to the spatial analysis of field experiments based on the software package AS residual maximum likelihood (ASREML; Gilmour et al. 1999). It describes common sources of spatial variation ...
Book
Thumbnail

Data analysis in the CIMMYT applied biotechnology center: for fingerprinting and genetic diversity studies 

Warburton, M.L.; Crossa, J. (CIMMYT, 2002)
The molecular genetic characterization of the diversity present in the CIMMYT maize and wheat germplasm collections is an ongoing process, to which many different persons have contributed. Furthermore, one of the mandates ...
Handbook
Thumbnail

User's manual for the LCDMV software (calculation software of molecular distances between varieties): for fingerprinting and genetic diversity studies 

Dubreuil, P.; Dillmann, C.; Warburton, M.L.; Crossa, J.; Franco Barrera, J.; Baril, C. (CIMMYT, 2003)
LCDMV (in English, known as the Calculation Software of Molecular Distances between Varieties) is a computer program developed in the SAS language (SAS Institute Inc., version 6.12), with the help of the modules SAS-STAT, ...
Article
Thumbnail

Analysis and interpretation of interactions in agricultural research 

Vargas Hernández, M.; Glaz, B.; Alvarado, G.; Pietragalla, J.; Morgounov, A.; Zelenskiy, Y.; Crossa, J. (American Society of Agronomy, 2015)
When reporting on well-conducted research, a characteristic of a complete and proper manuscript is one that includes analyses and interpretations of all interactions. Our purpose is to show how to analyze and interpret ...
Article
Thumbnail

META: A suite of sas programs to analyze multienvironment breeding trials 

Vargas Hernández, M.; Combs, E.; Alvarado, G.; Atlin, G.N.; Mathews, K.L.; Crossa, J. (American Society of Agronomy, 2013)
Multi-environment trials (METs) enable the evaluation of the same genotypes in a variety of environments and management conditions. We present here META (Multi Environment Trial Analysis), a suite of 31 SAS programs that ...
Article
Thumbnail

A reaction norm model for genomic selection using high-dimensional genomic and environmental data 

Jarquín, D.; Crossa, J.; Lacaze, X.; Cheyron, P. Du; Daucourt, J.; Lorgeou, J.; Piraux, F.; Guerreiro, L.; Pérez, P.; Calus, M.; Burgueño, J.; Campos, G.de los (Springer, 2013)
In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by environmental interaction (G × E). Modern genotyping technologies allow characterizing genomes in ...
Article
Thumbnail

Increased prediction accuracy in wheat breeding trials using a marker x environment interaction Genomic Selection model 

Lopez-Cruz, M.; Poland, J.; Jannink, J.L.; De los Campos, G.; Crossa, J.; Singh, R.P.; Dreisigacker, S.; Bonnett, D.; Autrique, E. (Genetics Society of America, 2015)
Genomic selection (GS) models use genome-wide genetic information to predict genetic values of candidates of selection. Originally, these models were developed without considering genotype · environment interaction( G·E). ...
  • 1
  • 2

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (19)
Burgueño, J. (10)De Los Campos, Gustavo (6)Montesinos-Lopez, Osval Antonio (6)Jarquin, D. (5)Pérez-Rodríguez, Paulino (5)Alvarado Beltrán, G. (4)Montesinos-López, A. (4)Vargas Hernández, M. (4)Singh, R.P. (3)... View More
Date Issued
2010 - 2019 (16)2000 - 2009 (3)
Type
Article (16)Handbook (2)Book (1)
Agrovoc
DATA ANALYSIS (19)
STATISTICAL METHODS (10)BAYESIAN THEORY (7)GENOTYPE ENVIRONMENT INTERACTION (4)ARTIFICIAL SELECTION (3)CROP FORECASTING (3)FIELD EXPERIMENTATION (3)FORECASTING (3)GENETIC MARKERS (3)REGRESSION ANALYSIS (3)... View More
Keywords
Genomic Selection (5)GenPred (5)Shared Data Resources (5)Bayesian Functional Regression (2)GBLUP (2)Genomic Prediction (2)Hyperspectral Data (2)Prediction Accuracy (2)Band × Environment Interaction (1)Bayesian Analysis (1)... View More
Region
Global (4)


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback