• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 24

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R 

Perez, P.; De los Campos, G.; Crossa, J.; Gianola, D. (Crop Science Society of America, 2010)
The availability of dense molecular markers has made possible the use of genomic selection in plant and animal breeding. However, models for genomic selection pose several computational and statistical challenges and require ...
Article
Thumbnail

Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat 

Pérez-Rodríguez, P.; Gianola, D.; Gonzalez-Camacho, J.M.; Crossa, J.; Manes, Y.; Dreisigacker, S. (Genetics Society of America, 2012)
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The ...
Article
Thumbnail

Multivariate bayesian analysis of on-farm trials with multiple-trait and multiple-environment data 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Vargas-Hernández, M.; Ortíz-Monasterios, I.; Perez-Rodriguez, P.; Burgueño, J.; Crossa, J. (American Society of Agronomy, 2019)
Article
Thumbnail

A benchmarking between deep learning, support vector machine and bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding 

Montesinos-Lopez, O.A.; Martin-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández Suárez, C.M.; Montesinos-Lopez, A.; Juliana, P.; Singh, R.P. (Genetics Society of America, 2019)
Genomic selection is revolutionizing plant breeding. However, still lacking are better statistical models for ordinal phenotypes to improve the accuracy of the selection of candidate genotypes. For this reason, in this ...
Article
Thumbnail

Genomic prediction in CIMMYT maize and wheat breeding programs 

Crossa, J.; Perez, P.; Hickey, J.; Burgueño, J.; Ornella, L.; Ceron-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.; Li, Y.; Bonnett, D.; Mathews, K. (Springer Nature, 2014)
Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending ...
Article
Thumbnail

Bayesian regularized quantile regression: a robust alternative for genome-based prediction of skewed data 

Perez-Rodriguez, P.; Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Crossa, J. (Elsevier, 2020)
Article
Thumbnail

Maximum a posteriori Threshold Genomic Prediction model for ordinal traits 

Montesinos-López, A.; Gutierrez-Pulido, H.; Montesinos-Lopez, O.A.; Crossa, J. (Genetics Society of America, 2020)
Article
Thumbnail

Application of multi-trait Bayesian decision theory for parental genomic selection 

Villar-Hernandez, B.d.J.; Perez-Elizalde, S.; Martini, J.W.R.; Toledo, F.H.; Perez-Rodriguez, P.; Krause, M.; García-Calvillo, I.D.; Covarrubias, E.; Crossa, J. (Genetics Society of America, 2021)
Article
Thumbnail

Extending the marker x environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat 

Crossa, J.; De Los Campos, G.; Maccaferri, M.; Tuberosa, R.; Burgueño, J.; Perez-Rodriguez, P. (Crop Science Society of America (CSSA), 2016)
The marker ´ environment interaction (M´E) genomic model can be used to generate predictions for untested individuals and identify genomic regions in which effects are stable across environments and others that show ...
Article
Thumbnail

A singular value decomposition Bayesian multiple-trait and multiple-environment genomic model 

Montesinos-Lopez, O.A.; Montesinos-Lopez, A.; Crossa, J.; Kismiantini; Ramirez-Alcaraz, J.M.; Singh, R.P.; Mondal, S.; Juliana, P. (Springer Nature, 2019)
Today, breeders perform genomic-assisted breeding to improve more than one trait. However, frequently there are several traits under study at one time, and the implementation of current genomic multiple-trait and ...
  • 1
  • 2
  • 3

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (24)
Montesinos-Lopez, Osval Antonio (14)Pérez-Rodríguez, Paulino (13)Montesinos-López, A. (11)Burgueño, J. (10)De Los Campos, Gustavo (5)Toledo, F.H. (5)Gianola, D. (4)Juliana, P. (4)Luna Vázquez, Francisco Javier (4)... View More
Date Issued
2020 - 2021 (3)2010 - 2019 (21)
Type
Article (24)
Agrovoc
BAYESIAN THEORY (24)
STATISTICAL METHODS (10)GENOMICS (9)DATA ANALYSIS (7)GENOTYPE ENVIRONMENT INTERACTION (6)REGRESSION ANALYSIS (5)WHEAT (4)GENETIC MARKERS (3)MARKER-ASSISTED SELECTION (3)ARTIFICIAL SELECTION (2)... View More
Keywords
Genomic Selection (9)GenPred (9)Shared Data Resources (9)Genomic Prediction (5)Bayesian Functional Regression (2)Data Augmentation (2)Hyperspectral Data (2)Loss Function (2)Multi-Trait Multi-Environment (2)Support Vector Machine (2)... View More
Region
Global (5)


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback