• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 24

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Presentation
Thumbnail

Utilizing genomics and phenomics in CIMMYT wheat breeding 

Mondal, S.; Poland, J.; Haghattilab, A.; Singh, D.; Rahmanm, M.; Sorrells, M.E.; Jin Sun; Singh, R. P.; Crossa, J.; Dreisigacker, S.; Kumar, U.; Imtiaz, M.; Juliana, P. (CIMMYT, 2016)
Conference Poster
Thumbnail

Increasing genetic gains in wheat through physiological genetics and breeding 

Sukumaran, S.; Reynolds, M.P.; Crossa, J.; Lopes, M.S.; Jarquin, D.; Dreisigacker, S.; Molero, G.; Pinto Espinosa, F.; Piñera Chavez, F.J. (CIMMYT, [2016])
In order to meet future wheat demand it is necessary to increase yield potential and develop stress adapted genotypes. To do so, research and breeding is conducted at CIMMYT through the International Wheat Yield Partnership ...
Article
Thumbnail

Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat 

Pérez-Rodríguez, P.; Gianola, D.; Gonzalez-Camacho, J.M.; Crossa, J.; Manes, Y.; Dreisigacker, S. (Genetics Society of America, 2012)
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The ...
Article
Thumbnail

Regularized selection indices for breeding value prediction using hyper-spectral image data 

Lopez-Cruz, M.; Olson, E.; Rovere, G.; Crossa, J.; Dreisigacker, S.; Mondal, S.; Singh, R.P.; De los Campos, G. (Nature Publishing Group, 2020)
Article
Thumbnail

Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat 

Krause, M.; Gonzalez-Perez, L.; Crossa, J.; Perez-Rodriguez, P.; Montesinos-Lopez, O.A.; Singh, R.P.; Dreisigacker, S.; Poland, J.A.; Rutkoski, J.; Sorrells, M.E.; Gore, M.A.; Mondal, S. (Genetics Society of America, 2019)
Hyperspectral reflectance phenotyping and genomic selection are two emerging technologies that have the potential to increase plant breeding efficiency by improving prediction accuracy for grain yield. Hyperspectral cameras ...
Article
Thumbnail

Genomic-enabled prediction with classification algorithms 

Ornella, L.; Pérez, P.; Tapia, E.; González-Camacho, J.M.; Burgueño, J.; Zhang, X.; Singh, S.; Vicente, F.S.; Bonnett, D.; Dreisigacker, S.; Singh, R.; Long, N.; Crossa, J. (Springer Nature, 2014)
Pearson’s correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression ...
Presentation
Thumbnail

Implementation of genomic selection in the CIMMYT Global Wheat Program, learnings from the past 10 years 

Dreisigacker, S.; Crossa, J.; Perez-Rodriguez, P.; Montesinos-Lopez, O.A.; Rosyara, U.; Juliana, P.; Mondal, S.; Crespo-Herrera, L.A.; Jarquín, D.; Velu, G.; Singh, R.P.; Braun, H.J. (CIMMYT, [2020])
Article
Thumbnail

Genome-wide association mapping and genomic prediction of anther extrusion in CIMMYT hybrid wheat breeding program via modeling pedigree, genomic relationship, and interaction with the environment 

Adhikari, A.; Basnet, B.R.; Crossa, J.; Dreisigacker, S.; Camarillo-Castillo, F.; Bhati, P.K.; Jarquin, D.; Yann Manes; Ibrahim, A.M.H. (Frontiers Media, 2020)
Article
Thumbnail

Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat 

Juliana, P.; Montesinos-Lopez, O.A.; Crossa, J.; Mondal, S.; Gonzalez-Perez, L.; Poland, J.; Huerta-Espino, J.; Crespo-Herrera, L.A.; Velu, G.; Dreisigacker, S.; Shrestha, S.; Perez-Rodriguez, P.; Pinto Espinosa, F.; Singh, R.P. (Springer, 2019)
Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting ...
Article
Thumbnail

The use of unbalanced historical data for genomic selection in an international wheat breeding program 

Dawson, J.C.; Endelman, J.B.; Heslot, N.; Crossa, J.; Poland, J.; Dreisigacker, S.; Manes, Y.; Sorrells, M.E.; Jean-Luc Jannink (Elsevier, 2013)
Genomic selection (GS) offers breeders the possibility of using historic data and unbalanced breeding trials to form training populations for predicting the performance of new lines. However, when using datasets that are ...
  • 1
  • 2
  • 3

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (24)
Dreisigacker, S. (24)
Singh, R.P. (14)Pérez-Rodríguez, Paulino (11)Mondal, S. (9)Poland, Jesse (8)Juliana, P. (7)Crespo Herrera, L.A. (6)Velu, G. (6)Basnet, B.R. (5)... View More
Date Issued
2010 - 2020 (21)2009 - 2009 (1)
Type
Article (18)Presentation (5)Conference Poster (1)
Agrovoc
WHEAT (16)PLANT BREEDING (6)BREEDING (4)ENVIRONMENTAL FACTORS (4)GENETIC MARKERS (4)GENOTYPE ENVIRONMENT INTERACTION (4)MARKER-ASSISTED SELECTION (4)STATISTICAL METHODS (4)ARTIFICIAL SELECTION (3)BAYESIAN THEORY (3)... View More
Keywords
Genomic Selection (5)GenPred (2)Shared Data Resources (2)Viscoelastic Properties (2)Wheat Breeding (2)Anther Extrusion (1)Bayesian LASSO (1)CIMMYT (1)Floral Traits (1)GBLUP (1)... View More
Region
Global (4)


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback