• español
    • English
  • English 
    • español
    • English
  • Login
baner

CIMMYT Publications Repository

Seeding innovation ... Nourishing hope

Search 
  •   DSpace Home
  • CIMMYT
  • Search
  •   DSpace Home
  • CIMMYT
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 41

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Type Asc
  • Type Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Article
Thumbnail

A benchmarking between deep learning, support vector machine and bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding 

Montesinos-Lopez, O.A.; Martin-Vallejo, J.; Crossa, J.; Gianola, D.; Hernández Suárez, C.M.; Montesinos-Lopez, A.; Juliana, P.; Singh, R.P. (Genetics Society of America, 2019)
Article
Thumbnail

High-throughput phenotyping enabled genetic dissection of crop lodging in wheat 

Singh, D.; Xu Wang; Kumar, U.; Liangliang Gao; Muhammad Noor; Imtiaz, M.; Singh, R.P.; Poland, J.A. (Frontiers, 2019)
Article
Thumbnail

A multivariate Poisson deep learning model for genomic prediction of count data 

Montesinos-Lopez, O.A.; Montesinos-Lopez, J.C.; Singh, P.K.; Lozano-Ramirez, N.; Barrón-López, A.; Montesinos-Lopez, A.; Crossa, J. (Genetics Society of America, 2020)
Article
Thumbnail

A bayesian poisson-lognormal model for count data for multiple-trait multiple-environment genomic-enabled prediction 

Montesinos-Lopez, O.A.; Montesinos-López, A.; Crossa, J.; Toledo, F.H.; Montesinos-López, J.C.; Singh, P.K.; Juliana, P.; Salinas Ruiz. J. (Genetics Society of America, 2017)
When a plant scientist wishes to make genomic-enabled predictions of multiple traits measured in multiple individuals in multiple environments, the most common strategy for performing the analysis is to use a single trait ...
Article
Thumbnail

The use of unbalanced historical data for genomic selection in an international wheat breeding program 

Dawson, J.C.; Endelman, J.B.; Heslot, N.; Crossa, J.; Poland, J.; Dreisigacker, S.; Manes, Y.; Sorrells, M.E.; Jean-Luc Jannink (Elsevier, 2013)
Genomic selection (GS) offers breeders the possibility of using historic data and unbalanced breeding trials to form training populations for predicting the performance of new lines. However, when using datasets that are ...
Article
Thumbnail

Genomic prediction in CIMMYT maize and wheat breeding programs 

Crossa, J.; Perez, P.; Hickey, J.; Burgueño, J.; Ornella, L.; Ceron-Rojas, J.; Zhang, X.; Dreisigacker, S.; Babu, R.; Li, Y.; Bonnett, D.; Mathews, K. (Springer Nature, 2014)
Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending ...
Article
Thumbnail

Genome‑wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm 

Gowda, M.; Das, B.; Makumbi, D.; Babu, R.; Semagn, K.; Mahuku, G.; Olsen, M.S.; Bright, J.M.; Beyene, Y.; Prasanna, B.M. (Springer, 2015)
The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. ...
Article
Thumbnail

Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations 

Gorjanc, G.; Jenko, J.; Hearne, S.; Hickey, J.M. (BioMed Central, 2016)
Background: The limited genetic diversity of elite maize germplasms raises concerns about the potential to breed for new challenges. Initiatives have been formed over the years to identify and utilize useful diversity from ...
Presentation
Thumbnail

Upstream research for accelerated genetic gain 

Olsen, M. (CIMMYT, 2018)
Article
Thumbnail

Enhancing hybrid prediction in pearl millet using genomic and/or multi-environment phenotypic information of inbreds 

Jarquín, D.; Howard, R.; Zhikai Liang; Shashi K. Gupta; Schnable, J.C.; Crossa, J. (Frontiers Media, 2020)
  • 1
  • 2
  • 3
  • 4
  • . . .
  • 5

Collections

Genetic ResourcesInstitutionalIntegrated DevelopmentMaizeSocioeconomicsSustainable IntensificationWheat

All of DSpace
Communities & CollectionsAuthorsTitlesSubjectsBy YearConferenceJournal
This Community
AuthorsTitlesSubjectsBy YearConferenceJournal

CIMMYT staff access

Login

Discover

Author
Crossa, J. (22)Montesinos-Lopez, Osval Antonio (10)Singh, R.P. (10)Burgueño, J. (9)Poland, Jesse (8)Pérez-Rodríguez, Paulino (8)Dreisigacker, S. (7)Rutkoski, Jessica (6)ZHANG, XUECAI (6)Montesinos-López, A. (5)... View More
Date Issued
2021 (2)2020 (9)2019 (4)2018 (8)2017 (4)2016 (5)2015 (4)2014 (3)2013 (2)
Type
Article (39)Presentation (1)
Agrovoc
MARKER-ASSISTED SELECTION (17)GENOMICS (14)BAYESIAN THEORY (10)STATISTICAL METHODS (10)WHEAT (10)ARTIFICIAL SELECTION (9)PLANT BREEDING (9)MAIZE (8)GENOTYPE ENVIRONMENT INTERACTION (7)DATA ANALYSIS (5)... View More
Keywords
Genomic Selection (41)
GenPred (17)Shared Data Resources (17)Genomic Prediction (7)Wheat Breeding (4)Deep Learning (3)GBLUP (3)Support Vector Machine (3)Association Mapping (2)Best Linear Unbiased Prediction (2)... View More


baner
 

 


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback