Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
Share
APA citation

Costa-Neto, G., Fritsche-Neto, R., & Crossa, J. (2021). Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials. Heredity, 126(1), 92–106. https://doi.org/10.1038/s41437-020-00353-1

ISO citation
Abstract
Description
Modern whole-genome prediction (WGP) frameworks that focus on multi-environment trials (MET) integrate large-scale genomics, phenomics, and envirotyping data. However, the more complex the statistical model, the longer the computational processing times, which do not always result in accuracy gains. We investigated the use of new kernel methods and modeling structures involving genomics and nongenomic sources of variation in two MET maize data sets. Five WGP models were considered, advancing in complexity from a main-effect additive model (A) to more complex structures, including dominance deviations (D), genotype x environment interaction (AE and DE), and the reaction-norm model using environmental covariables (W) and their interaction with A and D (AW + DW). A combination of those models built with three different kernel methods, Gaussian kernel (GK), Deep kernel (DK), and the benchmark genomic best linear-unbiased predictor (GBLUP/GB), was tested under three prediction scenarios: newly developed hybrids (CV1), sparse MET conditions (CV2), and new environments (CV0). GK and DK outperformed GB in prediction accuracy and reduction of computation time (similar to up to 20%) under all model-kernel scenarios. GK was more efficient in capturing the variation due to A + AE and D + DE effects and translated it into accuracy gains (similar to up to 85% compared with GB). DK provided more consistent predictions, even for more complex structures such as W + AW + DW. Our results suggest that DK and GK are more efficient in translating model complexity into accuracy, and more suitable for including dominance and reaction-norm effects in a biologically accurate and faster way.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
Heredity
Journal volume
126
Journal issue
Article number
Place of Publication
Harlow (United Kingdom)
Publisher
Springer Nature