Type
Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
APA citation
Montesinos-López, O. A., Montesinos‐López, A., González, B. a. M., Bentley, A. R., Lillemo, M., Varshney, R. K., & Crossa, J. (2021). A new deep learning calibration method enhances Genome-Based prediction of continuous crop traits. Frontiers in Genetics, 12, 798840. https://doi.org/10.3389/fgene.2021.798840
ISO citation
Abstract
Description
Genomic selection (GS) has the potential to revolutionize predictive plant breeding. A reference population is phenotyped and genotyped to train a statistical model that is used to perform genome-enabled predictions of new individuals that were only genotyped. In this vein, deep neural networks, are a type of machine learning model and have been widely adopted for use in GS studies, as they are not parametric methods, making them more adept at capturing nonlinear patterns. However, the training process for deep neural networks is very challenging due to the numerous hyper-parameters that need to be tuned, especially when imperfect tuning can result in biased predictions. In this paper we propose a simple method for calibrating (adjusting) the prediction of continuous response variables resulting from deep learning applications. We evaluated the proposed deep learning calibration method (DL_M2) using four crop breeding data sets and its performance was compared with the standard deep learning method (DL_M1), as well as the standard genomic Best Linear Unbiased Predictor (GBLUP). While the GBLUP was the most accurate model overall, the proposed deep learning calibration method (DL_M2) helped increase the genome-enabled prediction performance in all data sets when compared with the traditional DL method (DL_M1). Taken together, we provide evidence for extending the use of the proposed calibration method to evaluate its potential and consistency for predicting performance in the context of GS applied to plant breeding.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
Frontiers in Genetics
Journal volume
12
Journal issue
Article number
798840
Place of Publication
Switzerland
Publisher
Frontiers