Type
Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
APA citation
Mashavakure, N., Mashingaidze, A. B., Musundire, R., Gandiwa, E., Muposhi, V. K., Thierfelder, C., Nhamo, N., Bere, T., & Akhtar, S. (2018). Short-term impacts of tillage and fertilizer treatments on soil and root borne nematodes and maize yield in a fine textured cambisol. Journal of Nematology, 50(3), 329-342. https://doi.org/10.21307/jofnem-2018-033
ISO citation
Abstract
Conservation agriculture (CA) based on the principles of minimum soil disturbance, crop residue retention, and crop rotation has been the focus of intensive research in recent years. A study was carried out to determine the effects of tillage and fertilizer on the population densities of plant-parasitic nematodes in maize. Three tillage regimes, (i) basin planting, (ii) rip line seeding, and (iii) conventional tillage, were combined with four fertilizer regimes: (i) no-fertilizer, (ii) low fertilizer rate, (iii) medium fertilizer rate, and (iv) high fertilizer rate. The experiment was arranged as a split plot in randomized complete block design, replicated three times with tillage as the main plot factor and fertilizer as the sub-plot factor. The study was conducted on fine-textured Cambisol soils at Chinhoyi University of Technology farm, Zimbabwe, over two cropping seasons between December 2014 and April 2016. Eight plant-parasitic nematode genera were observed belonging to five groups based on their feeding sites: (i) sedentary endoparasites (Meloidogyne and Rotylenchulus), (ii) migratory endoparasites (Pratylenchus), (iii) semi-endoparasites (Scutelonema and Helicotylenchus), (iv) ectoparasites (Xiphinema and Trichodorus), and (v) algal, lichen or moss feeders (Tylenchus). In both cropping seasons, semi-endoparasitic nematodes were double under rip line seeding and triple under basin planting compared to conventional tillage. Basin planting had higher plant-parasitic nematode richness than rip line seeding. Nematode densities did not have a measurable effect on maize grain yield. Maize grain yield was higher in rip line seeding (37%) and planting basins (52%) than conventional tillage during 2014/15 cropping season. On the other hand, during 2015/16 cropping season, maize grain yield was 78% and 113% higher in rip line seeding and basin planting, respectively, compared to conventional tillage. The results show that under the environmental and edaphic conditions of this specific study site, semi-endoparasitic nematodes were higher under rip line seeding and basin planting compared to conventional tillage. The authors conclude that (i) plant-parasitic nematode genera exhibited differential responses to different tillage systems but were not affected by fertilizer application, and (ii) in the present study, maize grain yield response under different tillage and fertilizer regimes was overall not related to nematode population density and composition.