Type
Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
APA citation
Xu, Y., Ma, Y., Wang, X., Li, C., Zhang, X., Li, P., Yang, Z., & Xu, C. (2021). Kernel metabolites depict the diversity of relationship between maize hybrids and their parental lines. Crop Journal, 9(1), 181–191. https://doi.org/10.1016/j.cj.2020.05.009
ISO citation
Abstract
Description
As the end products of cellular regulatory processes, metabolites provide the link between genotypes and phenotypes. Although metabolites have been widely applied for functional gene detection and phenotype prediction in maize, there is little research focusing on the genetic information of metabolites per se. Here, we performed genetic analyses for the kernel metabolites of 11 parental inbred lines of six representative maize varieties, including Zhongdan 2, Danyu 13, Yedan 13, Zhengdan 958, Xianyu 355, and Suyu 16, as well as their 26 reciprocal hybrids. We identified a total of 208 metabolites in maize kernels using untargeted metabolite profiling technology. Both cluster analysis and principal component analysis indicated that kernel metabolites could distinguish hybrids from their parents. Analysis of variance further revealed that 163 metabolites exhibited significant differences between parents and hybrids, and 40 metabolites showed significant differences between reciprocal crosses. We also investigated the genetic effects and heterosis for each metabolite. By taking all hybrids into consideration, about two-thirds of all metabolites displayed overdominant with 36.8% and 31% of them displaying positive overdominant and negative overdominant, respectively. Besides, 27.5% and 20.4% of all hybrid combinations showed significant mid-parent heterosis and over-parent heterosis, respectively. Our findings revealed that kernel metabolites exhibited the diversity of relationship between maize hybrids and their parental lines. Additionally, we identified 25 significant metabolic markers related to 11 agronomic traits using the LASSO method. Seven metabolic markers were associated with more than one trait simultaneously. These results provide a genetic basis for further utilization of metabolites in the genetic improvement of maize.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
The Crop Journal
Journal volume
9
Journal issue
1
Article number
Place of Publication
Netherlands
Publisher
Elsevier