Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
Share
APA citation
ISO citation
Abstract
Description
Genomic selection (GS) is a predictive methodology that is changing plant breeding. Genomic selection trains a statistical machine-learning model using available phenotypic and genotypic data with which predictions are performed for individuals that were only genotyped. For this reason, some statistical machine-learning methods are being implemented in GS, but in order to improve the selection of new genotypes early in the prediction process, the exploration of new statistical machine-learning algorithms must continue. In this paper, we performed a benchmarking study between the Bayesian threshold genomic best linear unbiased predictor model (TGBLUP; popular in GS) and the gradient boosting machine (GBM). This comparison was done using four real wheat (Triticum aestivum L.) data sets with categorical traits measured in terms of two metrics: the proportion of cases correctly classified (PCCC) and the Kappa coefficient in the testing set. Under 10 random partitions with four different sizes of testing proportions (20, 40, 60, and 80%), we compared the two algorithms and found that in three of the four data sets, the GBM outperformed the TGBLUP model in terms of both metrics (PCCC and Kappa coefficient). In the larger data sets (Data Sets 3 and 4), the gain in terms of prediction accuracy of the GBM was considerably significant. For this reason, we encourage more research using the GBM in GS to evaluate its virtues in terms of prediction performance in the context of GS.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
Plant Genome
Journal volume
15
Journal issue
3
Article number
Place of Publication
Madison, WI (USA)
Publisher
Wiley