Type
Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
APA citation
Montesinos-López, O. A., Montesinos‐López, A., Kismiantini, Roman-Gallardo, A., Gardner, K. A., Lillemo, M., Fritsche‐Neto, R., & Crossa, J. (2022). Partial least squares enhances genomic prediction of new environments. Frontiers in Genetics, 13, 920689. https://doi.org/10.3389/fgene.2022.920689
ISO citation
Abstract
Description
In plant breeding, the need to improve the prediction of future seasons or new locations and/or environments, also denoted as “leave one environment out,” is of paramount importance to increase the genetic gain in breeding programs and contribute to food and nutrition security worldwide. Genomic selection (GS) has the potential to increase the accuracy of future seasons or new locations because it is a predictive methodology. However, most statistical machine learning methods used for the task of predicting a new environment or season struggle to produce moderate or high prediction accuracies. For this reason, in this study we explore the use of the partial least squares (PLS) regression methodology for this specific task, and we benchmark its performance with the Bayesian Genomic Best Linear Unbiased Predictor (GBLUP) method. The benchmarking process was done with 14 real datasets. We found that in all datasets the PLS method outperformed the popular GBLUP method by margins between 0% (in the Indica data) and 228.28% (in the Disease data) across traits, environments, and types of predictors. Our results show great empirical evidence of the power of the PLS methodology for the prediction of future seasons or new environments.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
Frontiers in Genetics
Journal volume
13
Journal issue
Article number
920689
Place of Publication
Switzerland
Publisher
Frontiers