Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
Share
APA citation
ISO citation
Abstract
Description
Genomic selection in maize (Zea mays L.) has been one factor that has increased the rate of genetic gain when compared with other cereals. However, the technological foundations in maize also exist in other cereal crops that would allow prediction of hybrid performance based on general (GCA) and specific (SCA) combining abilities applied through genomic-enabled prediction models. Further, the incorporation of genotype × environment (G × E) interaction effects present an opportunity to deploy hybrids to targeted environments. To test these concepts, a factorial mating design of elite yet divergent grain sorghum lines generated hybrids for evaluation. Inbred parents were genotyped, and markers were used to assess population structure and develop the genomic relationship matrix (GRM). Grain yield, height, and days to anthesis were collected for hybrids in replicated trials, and best linear unbiased estimates were used to train classical GCA-SCA–based and genomic (GB) models under a hierarchical Bayesian framework. To incorporate population structure, GB was fitted using the GRM of both parents and hybrids. For GB models, G × E interaction effects were included by the Hadamard product between GRM and environments. A leave-one-out cross-validation scheme was used to study the prediction capacity of models. Classical and genomic models effectively predicted hybrid performance and prediction accuracy increased by including genomic data. Genomic models effectively partitioned the variation due to GCA, SCA, and their interaction with the environment. A strategy to implement genomic selection for hybrid sorghum [Sorghum bicolor (L.) Moench] breeding is presented herein.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
Plant Genome
Journal volume
14
Journal issue
3
Article number
Place of Publication
USA
Publisher
Wiley
Related Datasets