Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
Share
APA citation
ISO citation
Abstract

Response of maize plants to excessive soil moisture (EM) has been studied extensively. However, systematic information on the stress-adaptive changes and cascade of events conferring the EM-tolerance is yet to be established. We attempted to assess the stress-adaptive physiological changes associated with EM-induced anoxia stress, and to establish mechanism of EM-tolerance in tropical maize. Tropical/sub-tropical elite maize inbred lines with known reaction to EM-stress were used in this study. Germplasm were exposed to EM-stress at knee-high stage (V7-8 growth stage) by flooding the plots continuously for seven days. EM-induced changes in root geotropism (surface rooting) and increased brace roots development were identified as stress-responsive traits; however, the later one was found to be a stress-adaptive trait resulting in improved stress tolerance. Anatomical studies showed drastic changes in cortical region of root tissues in tolerant genotypes in terms of development of large aerenchymatous spaces. In terms of stress-induced metabolic adjustments, increased NAD+-alcohol dehydrogenase (ADH) activity was prevalent in all the genotypes under EM-conditions.Though, the enzyme activity was slightly higher in tolerant entries but not high enough to justify the significant genotypic variability. However, the product of ADH-activity (ethanol) was relatively much higher in root and leaf tissues of susceptible genotypes. Analysis of ethanol concentration in shoot, root and inundated water showed that the level of ethanol was relatively much higher in the water present in rhizosphere of relatively tolerant genotypes. The finding suggested that EM-tolerant maize genotypes were able to extrude out the toxic level of ethanol from root tissues to rhizosphere. Our results suggest that mechanism of EM-tolerance in maize germplasm involves morphological and anatomical adaptation through development of brace roots and aerenchyma formation, and metabolic adjustment through regulatory induction of alcohol dehydrogenase (ADH) and extrusion of ethanol out of root tissues.

Description
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose.
Journal
Maydica
Journal volume
52
Journal issue
1
Article number
Place of Publication
Publisher
Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per la Maiscoltura
DOI
Related Datasets
Collections