Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
Share
APA citation

Scott, M. F., Fradgley, N., Bentley, A. R., Brabbs, T., Corke, F., Gardner, K. A., Horsnell, R., Howell, P., Ladejobi, O., Mackay, I., Mott, R., & Cockram, J. (2021). Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biology, 22(1), 137. https://doi.org/10.1186/s13059-021-02354-7

ISO citation
Abstract
Description
Background: Selection has dramatically shaped genetic and phenotypic variation in bread wheat. We can assess the genomic basis of historical phenotypic changes, and the potential for future improvement, using experimental populations that attempt to undo selection through the randomizing effects of recombination. Results: We bred the NIAB Diverse MAGIC multi-parent population comprising over 500 recombinant inbred lines, descended from sixteen historical UK bread wheat varieties released between 1935 and 2004. We sequence the founders’ genes and promoters by capture, and the MAGIC population by low-coverage whole-genome sequencing. We impute 1.1 M high-quality SNPs that are over 99% concordant with array genotypes. Imputation accuracy only marginally improves when including the founders’ genomes as a haplotype reference panel. Despite capturing 73% of global wheat genetic polymorphism, 83% of genes cluster into no more than three haplotypes. We phenotype 47 agronomic traits over 2 years and map 136 genome-wide significant associations, concentrated at 42 genetic loci with large and often pleiotropic effects. Around half of these overlap known quantitative trait loci. Most traits exhibit extensive polygenicity, as revealed by multi-locus shrinkage modelling. Conclusions: Our results are consistent with a gene pool of low haplotypic diversity, containing few novel loci of large effect. Most past, and projected future, phenotypic changes arising from existing variation involve fine-scale shuffling of a few haplotypes to recombine dozens of polygenic alleles of small effect. Moreover, extensive pleiotropy means selection on one trait will have unintended consequences, exemplified by the negative trade-off between yield and protein content, unless selection and recombination can break unfavorable trait-trait associations.
Keywords
Citation
Copyright
CIMMYT manages Intellectual Assets as International Public Goods. The user is free to download, print, store and share this work. In case you want to translate or create any other derivative work and share or distribute such translation/derivative work, please contact CIMMYT-Knowledge-Center@cgiar.org indicating the work you want to use and the kind of use you intend; CIMMYT will contact you with the suitable license for that purpose
Journal
Genome Biology
Journal volume
22
Journal issue
1
Article number
137
Place of Publication
United Kingdom
Publisher
BioMed Central
Collections