Type
Date
Corporate author
Editor
Illustrator
Producer
Photographer
Contributor
Writer
Translator
Journal Title
Journal ISSN
Volume Title
Access Rights
APA citation
Pariyar, S. R., Dababat, A. A., Sannemann, W., Erginbas-Orakci, G., Elashry, A., Siddique, S., Morgounov, A. I., Léon, J., & Grundler, F. M. W. (2016). Genome-wide association study in wheat identifies resistance to the cereal cyst nematode Heterodera filipjevi. Phytopathology, 106(10), 1128-1138. https://doi.org/10.1094/phyto-02-16-0054-fi
ISO citation
Abstract
The cyst nematode Heterodera filipjevi is a plant parasite causing substantial yield loss in wheat. Resistant cultivars are the preferred method of controlling cyst nematodes. Association mapping is a powerful approach to detect associations between phenotypic variation and genetic polymorphisms; in this way favorable traits such as resistance to pathogens can be located. Therefore, a genome-wide association study of 161 winter wheat accessions was performed with a 90K iSelect single nucleotide polymorphism (SNP) chip. Population structure analysis grouped into two major subgroups and first principal component accounted 6.16% for phenotypic diversity. The genome-wide linkage disequilibrium across wheat was 3 cM. Eleven quantitative trait loci (QTLs) on chromosomes 1AL, 2AS, 2BL, 3AL, 3BL, 4AS, 4AL, 5BL, and 7BL were identified using a mixed linear model false discovery rate of P < 0.01 that explained 43% of total genetic variation. This is the first report of QTLs conferring resistance to H. filipjevi in wheat. Eight QTLs on chromosomes 1AL, 2AS, 2BL, 3AL, 4AL, and 5BL were linked to putative genes known to be involved in plant−pathogen interactions. Two other QTLs on 3BL and one QTL on 7BL linked to putative genes known to be involved in abiotic stress.