Person:
Cabrera-Bosquet, L.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Cabrera-Bosquet
First Name
L.
Name
Cabrera-Bosquet, L.

Search Results

Now showing 1 - 4 of 4
  • NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions
    (Akadémiai Kiadó, 2011) Cabrera-Bosquet, L.; Molero, G.; Stellacci, A.M.; Bort, J.; Nogues, S.; Araus, J.L.
    Publication
  • Review: new sensors and data-driven approaches—A path to next generation phenomics
    (Elsevier, 2019) Roitsch, T.G.; Cabrera-Bosquet, L.; Fournier, A.; Ghamkhar, K.; Jiménez-Berni, J.; Pinto Espinosa, F.; Ober, E.
    At the 4th International Plant Phenotyping Symposium meeting of the International Plant Phenotyping Network (IPPN) in 2016 at CIMMYT in Mexico, a workshop was convened to consider ways forward with sensors for phenotyping. The increasing number of field applications provides new challenges and requires specialised solutions. There are many traits vital to plant growth and development that demand phenotyping approaches that are still at early stages of development or elude current capabilities. Further, there is growing interest in low-cost sensor solutions, and mobile platforms that can be transported to the experiments, rather than the experiment coming to the platform. Various types of sensors are required to address diverse needs with respect to targets, precision and ease of operation and readout. Converting data into knowledge, and ensuring that those data (and the appropriate metadata) are stored in such a way that they will be sensible and available to others now and for future analysis is also vital. Here we are proposing mechanisms for “next generation phenomics” based on our learning in the past decade, current practice and discussions at the IPPN Symposium, to encourage further thinking and collaboration by plant scientists, physicists and engineering experts.
    Publication
  • Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2?
    (Oxford University Press, 2011) Aranjuelo, I.; Cabrera-Bosquet, L.; Morcuende, R.; Avice, J.C.; Nogues, S.; Araus, J.L.; Martinez-Carrasco, R.; Pérez, P.
    Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 ìmol mol−1) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient 13C/12C isotopic composition (ä13C) of air CO2 was changed from ?10.2? in ambient [CO2] to ?23.6? under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the ä13C of ear total organic matter and respired CO2, soluble sugar ä13C revealed that a small amount of labelled C reached the ear. The 12CO2 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.
    Publication
  • Water and nitrogen conditions affect the relationships of Delta13C and Delta18O to gas exchange and growth in durum wheat
    (Oxford University Press, 2009) Cabrera-Bosquet, L.; Molero, G.; Nogues, S.; Araus, J.L.
    Whereas the effects of water and nitrogen (N) on plant Delta(13)C have been reported previously, these factors have scarcely been studied for Delta(18)O. Here the combined effect of different water and N regimes on Delta(13)C, Delta(18)O, gas exchange, water-use efficiency (WUE), and growth of four genotypes of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultured in pots was studied. Water and N supply significantly increased plant growth. However, a reduction in water supply did not lead to a significant decrease in gas exchange parameters, and consequently Delta(13)C was only slightly modified by water input. Conversely, N fertilizer significantly decreased Delta(13)C. On the other hand, water supply decreased Delta(18)O values, whereas N did not affect this parameter. Delta(18)O variation was mainly determined by the amount of transpired water throughout plant growth (T(cum)), whereas Delta(13)C variation was explained in part by a combination of leaf N and stomatal conductance (g(s)). Even though the four genotypes showed significant differences in cumulative transpiration rates and biomass, this was not translated into significant differences in Delta(18)O(s). However, genotypic differences in Delta(13)C were observed. Moreover, approximately 80% of the variation in biomass across growing conditions and genotypes was explained by a combination of both isotopes, with Delta(18)O alone accounting for approximately 50%. This illustrates the usefulness of combining Delta(18)O and Delta(13)C in order to assess differences in plant growth and total transpiration, and also to provide a time-integrated record of the photosynthetic and evaporative performance of the plant during the course of crop growth.
    Publication