Person:
Tanumihardjo, S.A.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tanumihardjo
First Name
S.A.
Name
Tanumihardjo, S.A.

Search Results

Now showing 1 - 2 of 2
  • Retention of carotenoids in biofortified maize flour and β-Cryptoxanthin-Enhanced eggs after household cooking
    (American Chemical Society, 2017) Sowa, M.; Jiaoying Yu; Palacios-Rojas, N.; Goltz, S. R.; Howe, J.A.; Davis, C.R.; Rocheford, T.R.; Tanumihardjo, S.A.
    Biofortification of crops to enhance provitamin A carotenoids is a strategy to increase the intake where vitamin A deficiency presents a widespread problem. Heat, light, and oxygen cause isomerization and oxidation of carotenoids, reducing provitamin A activity. Understanding provitamin A retention is important for assessing efficacy of biofortified foods. Retention of carotenoids in high-xanthophyll and high-β-carotene maize was assessed after a long-term storage at three temperatures. Carotenoid retention in high-β-cryptoxanthin maize was determined in muffins, non-nixtamalized tortillas, porridge, and fried puffs made from whole-grain and sifted flour. Retention in eggs from hens fed high-β-cryptoxanthin maize was assessed after frying, scrambling, boiling, and microwaving. Loss during storage in maize was accelerated with increasing temperature and affected by genotype. Boiling whole-grain maize into porridge resulted in the highest retention of all cooking and sifting methods (112%). Deep-fried maize and scrambled eggs had the lowest carotenoid retention rates of 67–78 and 84–86%, respectively.
    Publication
  • Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial 1–6
    (American Society for Nutrition, 2014) Gannon, B.M.; Kaliwile, C.; Arscott, S.A.; Schmaelzle, S.; Chileshe, J.; Kalungwana, N.; Mosonda, M.; Pixley, K.V.; Masi, C.; Tanumihardjo, S.A.
    Background: Biofortification is a strategy to relieve vitamin A (VA) deficiency. Biofortified maize contains enhanced provitamin A concentrations and has been bioefficacious in animal and small human studies. Objective: The study sought to determine changes in total body reserves (TBRs) of vitamin Awith consumption of biofortified maize. Design: A randomized, placebo-controlled biofortified maize efficacy trial was conducted in 140 rural Zambian children. The paired 13C-retinol isotope dilution test, a sensitive biomarker for VA status, was used to measure TBRs before and after a 90-d intervention. Treatments were white maize with placebo oil (VA2), orange maize with placebo (orange), and white maize with VA in oil [400 mg retinol activity equivalents (RAEs) in 214 mL daily] (VA+). Results: In total, 133 children completed the trial and were analyzed for TBRs (n = 44 or 45/group). Change in TBR residuals were not normally distributed (P , 0.0001); median changes (95% CI) were as follows: VA2, 13 (219, 44) mmol; orange, 84 (21, 146) mmol; and VA+, 98 (24, 171) mmol. Nonparametric analysis showed no statistical difference between VA+ and orange (P = 0.34); both were higher than VA2 (P = 0.0034). Median (95% CI) calculated liver reserves at baseline were 1.04 (0.97, 1.12) mmol/g liver, with 59% .1 mmol/g, the subtoxicity cutoff; none were ,0.1 mmol/g, the deficiency cutoff. The calculated bioconversion factor was 10.4 mg b-carotene equivalents/1 mg retinol by using the middle 3 quintiles of change in TBRs from each group. Serum retinol did not change in response to intervention (P = 0.16) but was reduced with elevated C-reactive protein (P = 0.0029) and a-1-acid glycoprotein (P = 0.0023) at baseline. Conclusions: b-Carotene from maize was efficacious when consumed as a staple food in this population and could avoid the potential for hypervitaminosis A that was observed with the use of preformed VA from supplementation and fortification. Use of more sensitive methods other than serum retinol alone, such as isotope dilution, is required to accurately assess VA status, evaluate interventions, and investigate the interaction of VA status and infection. This trial was registered at clinicaltrials.gov as NCT01814891. Am J Clin Nutr 2014;100:1541–50.
    Publication