Person:
Tanumihardjo, S.A.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tanumihardjo
First Name
S.A.
Name
Tanumihardjo, S.A.

Search Results

Now showing 1 - 2 of 2
  • Retention of carotenoids in biofortified maize flour and β-Cryptoxanthin-Enhanced eggs after household cooking
    (American Chemical Society, 2017) Sowa, M.; Jiaoying Yu; Palacios-Rojas, N.; Goltz, S. R.; Howe, J.A.; Davis, C.R.; Rocheford, T.R.; Tanumihardjo, S.A.
    Biofortification of crops to enhance provitamin A carotenoids is a strategy to increase the intake where vitamin A deficiency presents a widespread problem. Heat, light, and oxygen cause isomerization and oxidation of carotenoids, reducing provitamin A activity. Understanding provitamin A retention is important for assessing efficacy of biofortified foods. Retention of carotenoids in high-xanthophyll and high-β-carotene maize was assessed after a long-term storage at three temperatures. Carotenoid retention in high-β-cryptoxanthin maize was determined in muffins, non-nixtamalized tortillas, porridge, and fried puffs made from whole-grain and sifted flour. Retention in eggs from hens fed high-β-cryptoxanthin maize was assessed after frying, scrambling, boiling, and microwaving. Loss during storage in maize was accelerated with increasing temperature and affected by genotype. Boiling whole-grain maize into porridge resulted in the highest retention of all cooking and sifting methods (112%). Deep-fried maize and scrambled eggs had the lowest carotenoid retention rates of 67–78 and 84–86%, respectively.
    Publication
  • 13C natural abundance of serum retinol is a novel biomarker for evaluating provitamin A carotenoid-biofortified maize consumption in male Mongolian gerbils
    (American Society for Nutrition, 2016) Gannon, B.M.; Pungarcher, I.; Mourao, L.; Davis, C.R.; Simon, P.W.; Pixley, K.V.; Tanumihardjo, S.A.
    Background: Crops such as maize, sorghum, and millet are being biofortified with provitamin A carotenoids to ensure adequate vitamin A (VA) intakes. VA assessment can be challenging because serum retinol concentrations are homeostatically controlled and more sensitive techniques are resource-intensive. Objectives: We investigated changes in serum retinol relative differences of isotope amount ratios of 13C/12C (d13C) caused by natural 13C fractionation in C3 compared with C4 plants as a biomarker to detect provitamin A efficacy from biofortified (orange) maize and high-carotene carrots. Methods: The design was a 2 3 2 3 2 maize (orange compared with white) by carrot (orange compared with white) by a VA fortificant (VA+ compared with VA2) in weanling male Mongolian gerbils (n = 55), which included a 14-d VA depletion period and a 62-d treatment period (1 baseline and 8 treatment groups; n = 527/group). Liver VA and serum retinol were quantified, purified by HPLC, and analyzed by GC combustion isotope ratio mass spectrometry for 13C. Results: Treatments affected liver VA concentrations (0.048 6 0.039 to 0.79 6 0.24 mmol/g; P < 0.0001) but not overall serum retinol concentrations (1.3860.22 mmol/L). Serum retinol and liver VA d13C were significantly correlated (R2 = 0.92; P < 0.0001). Serum retinol d13C differentiated control groups that consumed white maize and white carrots (227.1 6 1.2 d13C&) from treated groups that consumed orange maize and white carrots (221.6 6 1.4 d13C&; P < 0.0001) and white maize and orange carrots (230.6 6 0.7 d13C&; P < 0.0001). A prediction model demonstrated the relative contribution of orange maize to total dietary VA for groups that consumed VA from mixed sources. Conclusions: Provitamin A efficacy and quantitative estimation of the relative contribution to dietary VA were demonstrated with the use of serum retinol d13C. This method could be used for maize efficacy or effectiveness studies and with other C4 crops biofortified with provitamin A carotenoids (e.g., millet, sorghum). Advantages include no extrinsic tracer dose, 1 blood sample, and higher sensitivity than serum retinol concentrations alone.
    Publication