- Burgueño, J.

## Person: Burgueño, J.

Loading...

##### Email Address

##### Birth Date

##### Research Projects

##### Organizational Units

##### Job Title

##### Last Name

Burgueño

##### First Name

J.

##### Name

Burgueño, J.

##### ORCID ID

0000-0002-1468-486711 results Back to results

### Filters

##### Author

##### Date

##### Type

##### Agrovoc

##### Keywords

##### Item Type

### Settings

Sort By

Results per page

## Search Results

Now showing 1 - 10 of 11

- Scalable sparse testing genomic selection strategy for early yield testing stage(Frontiers, 2021) Atanda, A.S.; Olsen, M.; Crossa, J.; Burgueño, J.; Rincent, R.; Dzidzienyo, D.; Beyene, Y.; Gowda, M.; Dreher, K.; Prasanna, B.M.; Tongoona, P.; Danquah, E.Y.; Olaoye, G.; Robbins, K.
Show more Publication - Application of genomic selection at the early stage of breeding pipeline in tropical maize(Frontiers, 2021) Beyene, Y.; Gowda, M.; Pérez-Rodríguez, P.; Olsen, M.; Robbins, K.; Burgueño, J.; Prasanna, B.M.; Crossa, J.
Show more Publication - Genomic-enabled prediction with classification algorithms(Springer Nature, 2014) Ornella, L.; Pérez-Rodríguez, P.; Tapia, E.; Gonzalez Camacho, J.M.; Burgueño, J.; Xuecai Zhang; Singh, S.; San Vicente Garcia, F.M.; Bonnett, D.; Dreisigacker, S.; Singh, R.P.; Long, N.; Crossa, J.
Show more Pearson’s correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait–environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best α=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen’s kappa coefficient (κ) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for α=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used ρ as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For α=15%, SVC-lin presented the highest κcoefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets) and the best RE in the same 13 data sets, with values ranging from 0.393 to 0.948 (statistically significant in 12 data sets). RR produced the best mean for both κ and RE in one data set (0.148 and 0.381, respectively). Regarding the wheat data sets, SVC-lin presented the best κ in 12 of the 16 data sets, with outcomes ranging from 0.280 to 0.580 (statistically significant in 4 data sets) and the best RE in 9 data sets ranging from 0.484 to 0.821 (statistically significant in 5 data sets). SVC-rbf (0.235), RR (0.265) and RHKS (0.422) gave the best κ in one data set each, while RHKS and BL tied for the last one (0.234). Finally, BL presented the best RE in two data sets (0.738 and 0.750), RFR (0.636) and SVC-rbf (0.617) in one and RHKS in the remaining three (0.502, 0.458 and 0.586). The difference between the performance of SVC-lin and that of the rest of the models was not so pronounced at higher percentiles of the distribution. The behaviour of regression and classification algorithms varied markedly when selection was done at different thresholds, that is, κ and RE for each algorithm depended strongly on the selection percentile. Based on the results, we propose classification method as a promising alternative for GS in plant breeding.Show more Publication - BGGE: a new package for genomic-enabled prediction incorporating genotype × environment interaction models(Genetics Society of America, 2018) Granato, I.; Cuevas, J.; Luna Vázquez, F.J.; Crossa, J.; Montesinos-Lopez, O.A.; Burgueño, J.; Fritsche-Neto, R.
Show more One of the major issues in plant breeding is the occurrence of genotype × environment (GE) interaction. Several models have been created to understand this phenomenon and explore it. In the genomic era, several models were employed to improve selection by using markers and account for GE interaction simultaneously. Some of these models use special genetic covariance matrices. In addition, the scale of multi-environment trials is getting larger, and this increases the computational challenges. In this context, we propose an R package that, in general, allows building GE genomic covariance matrices and fitting linear mixed models, in particular, to a few genomic GE models. Here we propose two functions: one to prepare the genomic kernels accounting for the genomic GE and another to perform genomic prediction using a Bayesian linear mixed model. A specific treatment is given for sparse covariance matrices, in particular, to block diagonal matrices that are present in some GE models in order to decrease the computational demand. In empirical comparisons with Bayesian Genomic Linear Regression (BGLR), accuracies and the mean squared error were similar; however, the computational time was up to five times lower than when using the classic approach. Bayesian Genomic Genotype × Environment Interaction (BGGE) is a fast, efficient option for creating genomic GE kernels and making genomic predictions.Show more Publication - A Bayesian decision theory approach for genomic selection(Genetics Society of America, 2018) Villar-Hernández, B.d.J.; Pérez-Elizalde, S.; Crossa, J.; Pérez-Rodríguez, P.; Toledo, F.H.; Burgueño, J.
Show more Plant and animal breeders are interested in selecting the best individuals from a candidate set for the next breeding cycle. In this paper, we propose a formal method under the Bayesian decision theory framework to tackle the selection problem based on genomic selection (GS) in single- and multi-trait settings. We proposed and tested three univariate loss functions (Kullback-Leibler, KL; Continuous Ranked Probability Score, CRPS; Linear-Linear loss, LinLin) and their corresponding multivariate generalizations (Kullback-Leibler, KL; Energy Score, EnergyS; and the Multivariate Asymmetric Loss Function, MALF). We derived and expressed all the loss functions in terms of heritability and tested them on a real wheat dataset for one cycle of selection and in a simulated selection program. The performance of each univariate loss function was compared with the standard method of selection (Std) that does not use loss functions. We compared the performance in terms of the selection response and the decrease in the population's genetic variance during recurrent breeding cycles. Results suggest that it is possible to obtain better performance in a long-term breeding program using the single-trait scheme by selecting 30% of the best individuals in each cycle but not by selecting 10% of the best individuals. For the multi-trait approach, results show that the population mean for all traits under consideration had positive gains, even though two of the traits were negatively correlated. The corresponding population variances were not statistically different from the different loss function during the 10th selection cycle. Using the loss function should be a useful criterion when selecting the candidates for selection for the next breeding cycle.Show more Publication - Genomic-enabled prediction Kernel models with random intercepts for multi-environment trials(Genetics Society of America, 2018) Cuevas, J.; Granato, I.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Burgueño, J.; Bandeira e Sousa, M.; Crossa, J.
Show more In this study, we compared the prediction accuracy of the main genotypic effect model (MM) without G×E interactions, the multi-environment single variance G×E deviation model (MDs), and the multienvironment environment-specific variance G×E deviation model (MDe) where the random genetic effects of the lines are modeled with the markers (or pedigree). With the objective of further modeling the genetic residual of the lines, we incorporated the random intercepts of the lines (l) and generated another three models. Each of these 6 models were fitted with a linear kernel method (Genomic Best Linear Unbiased Predictor, GB) and a Gaussian Kernel (GK) method. We compared these 12 model-method combinations with another two multi-environment G×E interactions models with unstructured variance-covariances (MUC) using GB and GK kernels (4 model-method). Thus, we compared the genomic-enabled prediction accuracy of a total of 16 model-method combinations on two maize data sets with positive phenotypic correlations among environments, and on two wheat data sets with complex G×E that includes some negative and close to zero phenotypic correlations among environments. The two models (MDs and MDE with the random intercept of the lines and the GK method) were computationally efficient and gave high prediction accuracy in the two maize data sets. Regarding the more complex G×E wheat data sets, the prediction accuracy of the model-method combination with G×E, MDs and MDe, including the random intercepts of the lines with GK method had important savings in computing time as compared with the G×E interaction multi-environment models with unstructured variance-covariances but with lower genomic prediction accuracy.Show more Publication - Genomic-enabled prediction in maize using kernel models with genotype x environment interaction(Genetics Society of America, 2017) Bandeira e Sousa, M.; Cuevas, J.; Couto, E.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J.
Show more Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.Show more Publication - Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations(Frontiers, 2017) Ao Zhang; Hongwu Wang; Beyene, Y.; Semagn, K.; Yubo Liu; Shiliang Cao; Zhenhai Cui; Yanye Ruan; Burgueño, J.; San Vicente Garcia, F.M.; Olsen, M.; Prasanna, B.M.; Crossa, J.; Haiqiu Yu; Xuecai Zhang
Show more Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy (rMG) of the six trait-environment combinations under various levels of training population size (TPS) and marker density (MD), and assess the effect of trait heritability (h2), TPS and MD on rMG estimation. Our results showed that: (1) moderate rMG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2) rMG increased with an increase in h2, TPS and MD, both correlation and variance analyses showed that h2 is the most important factor and MD is the least important factor on rMG estimation for most of the trait-environment combinations; (3) predictions between pairwise half-sib populations showed that the rMG values for all the six trait-environment combinations were centered around zero, 49% predictions had rMG values above zero; (4) the trend observed in rMG differed with the trend observed in rMG/h, and h is the square root of heritability of the predicted trait, it indicated that both rMG and rMG/h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.Show more Publication - Bayesian genomic prediction with genotype x environment interaction kernel models(Genetics Society of America, 2017) Cuevas, J.; Crossa, J.; Montesinos-Lopez, O.A.; Burgueño, J.; Pérez-Rodríguez, P.; De Los Campos, G.
Show more The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G · E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G · E interaction are extensions of a singleenvironment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ðuÞ that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model ðuÞ plus an extra component, f, that captures random effects between environments that were not captured by the random effects u: We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G · E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u.Show more Publication - Genomic prediction in maize breeding populations with genotyping-by sequencing(Genetics Society of America, 2013) Crossa, J.; Beyene, Y.; Semagn, K.; Pérez-Rodríguez, P.; Hickey, J.; Charles Chen; De Los Campos, G.; Burgueño, J.; Windhausen, V.S.; Buckler, E.; Jannink, J.L.; Lopez-Cruz, M.; Babu, R.
Show more Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, GBS has become an attractive alternative technology for genomic selection. However, the use of GBS data poses important challenges, and the accuracy of genomic prediction using GBS is currently undergoing investigation in several crops, including maize, wheat, and cassava. The main objective of this study was to evaluate various methods for incorporating GBS information and compare them with pedigree models for predicting genetic values of lines from two maize populations evaluated for different traits measured in different environments (experiments 1 and 2). Given that GBS data come with a large percentage of uncalled genotypes, we evaluated methods using nonimputed, imputed, and GBS-inferred haplotypes of different lengths (short or long). GBS and pedigree data were incorporated into statistical models using either the genomic best linear unbiased predictors (GBLUP) or the reproducing kernel Hilbert spaces (RKHS) regressions, and prediction accuracy was quantified using cross-validation methods. The following results were found: relative to pedigree or marker-only models, there were consistent gains in prediction accuracy by combining pedigree and GBS data; there was increased predictive ability when using imputed or nonimputed GBS data over inferred haplotype in experiment 1, or nonimputed GBS and information-based imputed short and long haplotypes, as compared to the other methods in experiment 2; the level of prediction accuracy achieved using GBS data in experiment 2 is comparable to those reported by previous authors who analyzed this data set using SNP arrays; and GBLUP and RKHS models with pedigree with nonimputed and imputed GBS data provided the best prediction correlations for the three traits in experiment 1, whereas for experiment 2 RKHS provided slightly better prediction than GBLUP for drought-stressed environments, and both models provided similar predictions in well-watered environments.Show more Publication