Person: Semagn, K.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Semagn
First Name
K.
Name
Semagn, K.
ORCID ID
0000-0001-6486-56852 results
Search Results
Now showing 1 - 2 of 2
- A genomic selection index applied to simulated and real data(Genetics Society of America, 2015) Cerón-Rojas, J.J.; Crossa, J.; Arief, V.N.; Basford, K.E.; Rutkoski, J.; Jarquin, D.; Alvarado Beltrán, G.; Beyene, Y.; Semagn, K.; Delacy, I.H.A genomic selection index (GSI) is a linear combination of genomic estimated breeding values that uses genomic markers to predict the net genetic merit and select parents from a nonphenotyped testing population. Some authors have proposed a GSI; however, they have not used simulated or real data to validate the GSI theory and have not explained how to estimate the GSI selection response and the GSI expected genetic gain per selection cycle for the unobserved traits after the first selection cycle to obtain information about the genetic gains in each subsequent selection cycle. In this paper, we develop the theory of a GSI and apply it to two simulated and four real data sets with four traits. Also, we numerically compare its efficiency with that of the phenotypic selection index (PSI) by using the ratio of the GSI response over the PSI response, and the PSI and GSI expected genetic gain per selection cycle for observed and unobserved traits, respectively. In addition, we used the Technow inequality to compare GSI vs. PSI efficiency. Results from the simulated data were confirmed by the real data, indicating that GSI was more efficient than PSI per unit of time.
Publication - Genomic prediction in maize breeding populations with genotyping-by sequencing(Genetics Society of America, 2013) Crossa, J.; Beyene, Y.; Semagn, K.; Pérez-Rodríguez, P.; Hickey, J.; Charles Chen; De Los Campos, G.; Burgueño, J.; Windhausen, V.S.; Buckler, E.; Jannink, J.L.; Lopez-Cruz, M.; Babu, R.Genotyping-by-sequencing (GBS) technologies have proven capacity for delivering large numbers of marker genotypes with potentially less ascertainment bias than standard single nucleotide polymorphism (SNP) arrays. Therefore, GBS has become an attractive alternative technology for genomic selection. However, the use of GBS data poses important challenges, and the accuracy of genomic prediction using GBS is currently undergoing investigation in several crops, including maize, wheat, and cassava. The main objective of this study was to evaluate various methods for incorporating GBS information and compare them with pedigree models for predicting genetic values of lines from two maize populations evaluated for different traits measured in different environments (experiments 1 and 2). Given that GBS data come with a large percentage of uncalled genotypes, we evaluated methods using nonimputed, imputed, and GBS-inferred haplotypes of different lengths (short or long). GBS and pedigree data were incorporated into statistical models using either the genomic best linear unbiased predictors (GBLUP) or the reproducing kernel Hilbert spaces (RKHS) regressions, and prediction accuracy was quantified using cross-validation methods. The following results were found: relative to pedigree or marker-only models, there were consistent gains in prediction accuracy by combining pedigree and GBS data; there was increased predictive ability when using imputed or nonimputed GBS data over inferred haplotype in experiment 1, or nonimputed GBS and information-based imputed short and long haplotypes, as compared to the other methods in experiment 2; the level of prediction accuracy achieved using GBS data in experiment 2 is comparable to those reported by previous authors who analyzed this data set using SNP arrays; and GBLUP and RKHS models with pedigree with nonimputed and imputed GBS data provided the best prediction correlations for the three traits in experiment 1, whereas for experiment 2 RKHS provided slightly better prediction than GBLUP for drought-stressed environments, and both models provided similar predictions in well-watered environments.
Publication