Person: Semagn, K.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Semagn
First Name
K.
Name
Semagn, K.
ORCID ID
0000-0001-6486-56852 results
Search Results
Now showing 1 - 2 of 2
- Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations(Frontiers, 2017) Ao Zhang; Hongwu Wang; Beyene, Y.; Semagn, K.; Yubo Liu; Shiliang Cao; Zhenhai Cui; Yanye Ruan; Burgueño, J.; San Vicente Garcia, F.M.; Olsen, M.; Prasanna, B.M.; Crossa, J.; Haiqiu Yu; Xuecai ZhangGenomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy (rMG) of the six trait-environment combinations under various levels of training population size (TPS) and marker density (MD), and assess the effect of trait heritability (h2), TPS and MD on rMG estimation. Our results showed that: (1) moderate rMG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2) rMG increased with an increase in h2, TPS and MD, both correlation and variance analyses showed that h2 is the most important factor and MD is the least important factor on rMG estimation for most of the trait-environment combinations; (3) predictions between pairwise half-sib populations showed that the rMG values for all the six trait-environment combinations were centered around zero, 49% predictions had rMG values above zero; (4) the trend observed in rMG differed with the trend observed in rMG/h, and h is the square root of heritability of the predicted trait, it indicated that both rMG and rMG/h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.
Publication - The genetic dissection of quantitative traits in crops(Pontificia Universidad Católica de Valparaíso, 2010) Semagn, K.; Bjornstad, A.; Yunbi XuMost traits of interest in plant breeding show quantitative inheritance, which complicate the breeding process since phenotypic performances only partially reflects the genetic values of individuals. The genetic variation of a quantitative trait is assumed to be controlled by the collective effects of quantitative trait loci (QTLs), epistasis (interaction between QTLs), the environment, and interaction between QTL and environment. Exploiting molecular markers in breeding involve finding a subset of markers associated with one or more QTLs that regulate the expression of complex traits. Many QTL mapping studies conducted in the last two decades identified QTLs that generally explained a significant proportion of the phenotypic variance, and therefore, gave rise to an optimistic assessment of the prospects of markers assisted selection. Linkage analysis and association mapping are the two most commonly used methods for QTL mapping. This review provides an overview of the two QTL mapping methods, including mapping population type and size, phenotypic evaluation of the population, molecular profiling of either the entire or a subset of the population, marker-trait association analysis using different statistical methods and software as well as the future prospects of using markers in crop improvement.
Publication