Person:
Semagn, K.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Semagn
First Name
K.
Name
Semagn, K.

Search Results

Now showing 1 - 2 of 2
  • Genetic diversity among selected elite CIMMYT maize hybrids in East and Southern Africa
    (Crop Science Society of America, 2017) Masuka, B.; Biljon, A.; Cairns, J.E.; Das, B.; Labuschagne, M.; MacRobert, J.; Makumbi, D.; Magorokosho, C.; Zaman-Allah, M.; Ogugo, V.; Olsen, M.; Prasanna, B.M.; Tarekegne, A.T.; Semagn, K.
    Genetic gain within the CIMMYT Eastern and Southern Africa (ESA) hybrid maize (Zea mays L.) breeding program from 2000 to 2010 was recently estimated at 0.85 to 2.2% yr−1 under various environmental conditions. Over 100 varieties were disseminated from CIMMYT to farmers in ESA, hence the need to check genetic diversity and frequency of use of parents to avoid potential narrowing down of the genetic base. Fifty-five parents from CIMMYT ESA used in the hybrids were fingerprinted using genotyping-by-sequencing. Data analysis in TASSEL and MEGA6 generated pairwise genetic distances between parents of 0.004 to 0.4005. Unweighted pair group method with arithmetic mean (UPGMA) analysis produced two clusters (I and II) with two subclusters each (A and B) and two sub-subclusters (IAi and IAii). Principal coordinate analysis produced three clusters where IAi and IIA from the UPGMA analysis formed independent clusters while IAii, IB, and IIB clustered together. Lines were separated by pedigree and origin. Ninety-five percent frequency of pairwise genetic distances ranged between 0.2001 and 0.4000. However, only four of the 55 parents (CML444, CML395, CML312, and CML442) were each used in 15 to 30 of the 52 hybrids evaluated in the genetic gain study. The remaining 51 were used in one to four hybrids. Frequent use of the four parents gave 29 to 58% of the hybrids a narrow genetic base, posing risk in case of pest or disease outbreaks. Parents evaluated do not represent the genetic base of CIMMYT ESA but parents of the best-performing hybrids selected from 2000 to 2010. Breeders should ensure a wide genetic base for released varieties to avoid breakdown in case of pest or disease outbreaks.
    Publication
  • Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in Sub-Saharan Africa
    (Crop Science Society of America (CSSA), 2016) Wallace, J.; Xuecai Zhang; Beyene, Y.; Semagn, K.; Olsen, M.; Prasanna, B.M.; Buckler, E.
    Genotyping breeding materials is now relatively inexpensive but phenotyping costs have remained the same. One method to increase gene mapping power is to use genome-wide genetic markers to combine existing phenotype data for multiple populations into a unified analysis. We combined data from 15 biparental populations of maize (Zea mays L.) (>2500 individual lines) developed under the Water-Efficient Maize for Africa project to perform genome-wide association analysis. Each population was phenotyped in multilocation trials under water-stressed and well-watered environments and genotyped via genotyping-by-sequencing. We focused on flowering time and plant height and identified clear associations between known genomic regions and the traits of interest. Out of ~380,000 single- nucleotide polymorphisms (SNPs), we found 115 and 108 that were robustly associated with flowering time under well-watered and drought stress conditions, respectively, and 143 and 120 SNPs, respectively, associated with plant height. These SNPs explained 36 to 80% of the genetic variance, with higher accuracy under wellwatered conditions. The same set of SNPs had phenotypic prediction accuracies equivalent to genome-wide SNPs and were significantly better than an equivalent number of random SNPs, indicating that they captured most of the genetic variation for these phenotypes. These methods could potentially aid breeding efforts for maize in Sub-Saharan Africa and elsewhere. The methods will also help in mapping drought tolerance and related traits in this germplasm. We expect that analyses combining data across multiple populations will become more common and we call for the development of algorithms and software to enable routine analyses of this nature.
    Publication