Person:
Semagn, K.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Semagn
First Name
K.
Name
Semagn, K.

Search Results

Now showing 1 - 3 of 3
  • The development of drought tolerant maize germplasm in sub-Saharan Africa using marker-assisted recurrent selection and genomic selection
    (CIMMYT, 2016) Beyene, Y.; Semagn, K.; Mugo, S.N.; Meisel, B.; Oikeh, S.O.; Tarekegne, A.T.; Olsen, M.; Prasanna, B.M.; Crossa, J.
    Publication
  • Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs
    (Springer Nature, 2015) Xuecai Zhang; Pérez-Rodríguez, P.; Semagn, K.; Beyene, Y.; Babu, R.; Lopez-Cruz, M.; San Vicente Garcia, F.M.; Olsen, M.; Buckler, E.; Jannink, J.L.; Prasanna, B.M.; Crossa, J.
    One of the most important applications of genomic selection in maize breeding is to predict and identify the best untested lines from biparental populations, when the training and validation sets are derived from the same cross. Nineteen tropical maize biparental populations evaluated in multienvironment trials were used in this study to assess prediction accuracy of different quantitative traits using low-density (~200 markers) and genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs), respectively. An extension of the Genomic Best Linear Unbiased Predictor that incorporates genotype × environment (GE) interaction was used to predict genotypic values; cross-validation methods were applied to quantify prediction accuracy. Our results showed that: (1) low-density SNPs (~200 markers) were largely sufficient to get good prediction in biparental maize populations for simple traits with moderate-to-high heritability, but GBS outperformed low-density SNPs for complex traits and simple traits evaluated under stress conditions with low-to-moderate heritability; (2) heritability and genetic architecture of target traits affected prediction performance, prediction accuracy of complex traits (grain yield) were consistently lower than those of simple traits (anthesis date and plant height) and prediction accuracy under stress conditions was consistently lower and more variable than under well-watered conditions for all the target traits because of their poor heritability under stress conditions; and (3) the prediction accuracy of GE models was found to be superior to that of non-GE models for complex traits and marginal for simple traits.
    Publication
  • Genome‑wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm
    (Springer, 2015) Gowda, M.; Das, B.; Makumbi, D.; Babu, R.; Semagn, K.; Mahuku, G.; Olsen, M.; Bright, J.M.; Beyene, Y.; Prasanna, B.M.
    The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. Our objective was to gain insights into the genetic architecture underlying the resistance to MLND by genome-wide association study (GWAS) and genomic selection. We used two association mapping (AM) panels comprising a total of 615 diverse tropical/subtropical maize inbred lines. All the lines were evaluated against MLND under artificial inoculation. Both the panels were genotyped using genotyping-by-sequencing. Phenotypic variation for MLND resistance was significant and heritability was moderately high in both the panels. Few promising lines with high resistance to MLND were identified to be used as potential donors. GWAS revealed 24 SNPs that were significantly associated (P < 3 × 10−5) with MLND resistance. These SNPs are located within or adjacent to 20 putative candidate genes that are associated with plant disease resistance. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed higher prediction accuracy for IMAS-AM panel (0.56) over DTMA-AM (0.36) panel. The prediction accuracy for both within and across panels is promising; inclusion of MLND resistance associated SNPs into the prediction model further improved the accuracy. Overall, the study revealed that resistance to MLND is controlled by multiple loci with small to medium effects and the SNPs identified by GWAS can be used as potential candidates in MLND resistance breeding program.
    Publication