Person:
Pérez-Rodríguez, P.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pérez-Rodríguez
First Name
P.
Name
Pérez-Rodríguez, P.

Search Results

Now showing 1 - 3 of 3
  • Genomic prediction with genotype by environment interaction analysis for kernel zinc concentration in tropical maize germplasm
    (Genetics Society of America, 2020) Mageto, E.; Crossa, J.; Pérez-Rodríguez, P.; Dhliwayo, T.; Palacios-Rojas, N.; Lee, M.; Rui Guo; San Vicente Garcia, F.M.; Xuecai Zhang; Hindu, V.
    Publication
  • Genomic-enabled prediction in maize using kernel models with genotype x environment interaction
    (Genetics Society of America, 2017) Bandeira e Sousa, M.; Cuevas, J.; Couto, E.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J.
    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.
    Publication
  • Bayesian genomic prediction with genotype x environment interaction kernel models
    (Genetics Society of America, 2017) Cuevas, J.; Crossa, J.; Montesinos-Lopez, O.A.; Burgueño, J.; Pérez-Rodríguez, P.; De Los Campos, G.
    The phenomenon of genotype · environment (G · E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G · E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G · E interaction are extensions of a singleenvironment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ðuÞ that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model ðuÞ plus an extra component, f, that captures random effects between environments that were not captured by the random effects u: We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G · E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u.
    Publication