Person: Pérez-Rodríguez, P.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pérez-Rodríguez
First Name
P.
Name
Pérez-Rodríguez, P.
ORCID ID
0000-0002-3202-17846 results
Search Results
Now showing 1 - 6 of 6
- Approximate genome-based kernel models for large data sets including main effects and interactions(Frontiers, 2020) Cuevas, J.; Montesinos-Lopez, O.A.; Martini, J.W.R.; Pérez-Rodríguez, P.; Lillemo, M.; Crossa, J.
Publication - Deep kernel for genomic and near infrared predictions in multi-environment breeding trials(Genetics Society of America, 2019) Cuevas, J.; Montesinos-Lopez, O.A.; Juliana, P.; Guzman, C.; Pérez-Rodríguez, P.; González-Bucio, J.; Burgueño, J.; Montesinos-López, A.; Crossa, J.Kernel methods are flexible and easy to interpret and have been successfully used in genomic-enabled prediction of various plant species. Kernel methods used in genomic prediction comprise the linear genomic best linear unbiased predictor (GBLUP or GB) kernel, and the Gaussian kernel (GK). In general, these kernels have been used with two statistical models: single-environment and genomic × environment (GE) models. Recently near infrared spectroscopy (NIR) has been used as an inexpensive and non-destructive high-throughput phenotyping method for predicting unobserved line performance in plant breeding trials. In this study, we used a non-linear arc-cosine kernel (AK) that emulates deep learning artificial neural networks. We compared AK prediction accuracy with the prediction accuracy of GB and GK kernel methods in four genomic data sets, one of which also includes pedigree and NIR information. Results show that for all four data sets, AK and GK kernels achieved higher prediction accuracy than the linear GB kernel for the single-environment and GE multi-environment models. In addition, AK achieved similar or slightly higher prediction accuracy than the GK kernel. For all data sets, the GE model achieved higher prediction accuracy than the single-environment model. For the data set that includes pedigree, markers and NIR, results show that the NIR wavelength alone achieved lower prediction accuracy than the genomic information alone; however, the pedigree plus NIR information achieved only slightly lower prediction accuracy than the marker plus the NIR high-throughput data.
Publication - Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat(Genetics Society of America, 2019) Krause, M.; González Pérez, L.; Crossa, J.; Pérez-Rodríguez, P.; Montesinos-Lopez, O.A.; Singh, R.P.; Dreisigacker, S.; Poland, J.; Rutkoski, J.; Sorrells, M.E.; Gore, M.A.; Mondal, S.Hyperspectral reflectance phenotyping and genomic selection are two emerging technologies that have the potential to increase plant breeding efficiency by improving prediction accuracy for grain yield. Hyperspectral cameras quantify canopy reflectance across a wide range of wavelengths that are associated with numerous biophysical and biochemical processes in plants. Genomic selection models utilize genome-wide marker or pedigree information to predict the genetic values of breeding lines. In this study, we propose a multi-kernel GBLUP approach to genomic selection that uses genomic marker-, pedigree-, and hyperspectral reflectance-derived relationship matrices to model the genetic main effects and genotype × environment (G × E) interactions across environments within a bread wheat (Triticum aestivum L.) breeding program. We utilized an airplane equipped with a hyperspectral camera to phenotype five differentially managed treatments of the yield trials conducted by the Bread Wheat Improvement Program of the International Maize and Wheat Improvement Center (CIMMYT) at Ciudad Obregón, México over four breeding cycles. We observed that single-kernel models using hyperspectral reflectance-derived relationship matrices performed similarly or superior to marker- and pedigree-based genomic selection models when predicting within and across environments. Multi-kernel models combining marker/pedigree information with hyperspectral reflectance phentoypes had the highest prediction accuracies; however, improvements in accuracy over marker- and pedigree-based models were marginal when correcting for days to heading. Our results demonstrate the potential of using hyperspectral imaging to predict grain yield within a multi-environment context and also support further studies on the integration of hyperspectral reflectance phenotyping into breeding programs.
Publication - Genomic prediction of genotype x environment interaction kernel regression models(Crop Science Society of America, 2016) Cuevas, J.; Crossa, J.; Soberanis, V.; Pérez-Elizalde, S.; Pérez-Rodríguez, P.; De Los Campos, G.; Montesinos-Lopez, O.A.; Burgueño, J.In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat (Triticum aestivum L.) and maize (Zea mays L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects
Publication - Genomic-enabled prediction in maize using kernel models with genotype x environment interaction(Genetics Society of America, 2017) Bandeira e Sousa, M.; Cuevas, J.; Couto, E.; Pérez-Rodríguez, P.; Jarquin, D.; Fritsche-Neto, R.; Burgueño, J.; Crossa, J.Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.
Publication - Single-step genomic and pedigree genotype x environment interaction models for predicting wheat lines in international environments(Crop Science Society of America, 2017) Pérez-Rodríguez, P.; Crossa, J.; Rutkoski, J.; Singh, R.P.; Legarra, A.; Autrique, E.; De Los Campos, G.; Burgueño, J.; Dreisigacker, S.Genomic prediction models have been commonly used in plant breeding but only in reduced datasets comprising a few hundred genotyped individuals. However, pedigree information for an entire breeding population is frequently available, as are historical data on the performance of a large number of selection candidates. The single-step method extends the genomic relationship information from genotyped individuals to pedigree information from a larger number of phenotyped individuals in order to combine relationship information on all members of the breeding population. Furthermore, genomic prediction models that incorporate genotype × environment interactions (G × E) have produced substantial increases in prediction accuracy compared with single-environment genomic prediction models. Our main objective was to show how to use single-step genomic and pedigree models to assess the prediction accuracy of 58,798 CIMMYT wheat (Triticum aestivum L.) lines evaluated in several simulated environments in Ciudad Obregon, Mexico, and to predict the grain yield performance of some of them in several sites in South Asia (India, Pakistan, and Bangladesh) using a reaction norm model that incorporated G × E. Another objective was to describe the statistical and computational challenges encountered when developing the pedigree and single-step models in such large datasets. Results indicate that the genomic prediction accuracy achieved by models using pedigree only, markers only, or both pedigree and markers to predict various environments in India, Pakistan, and Bangladesh is higher (0.25–0.38) than prediction accuracy of models that use only phenotypic prediction (0.20) or do not include the G × E term.
Publication