Person:
Yunbi Xu

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Yunbi Xu
First Name
Name
Yunbi Xu

Search Results

Now showing 1 - 3 of 3
  • Enhancement of plant variety protection and regulation using molecular marker technology
    (Institute of Crop Sciences, 2022) Yunbi Xu; Wang Bing-Bing; Jian Zhang; Jia-Nan Zhang; Jiansheng Li
    Publication
  • Enhancing genetic gain through genomic selection: from livestock to plants
    (Elsevier, 2020) Yunbi Xu; Xiaogang Liu; Junjie Fu; Hongwu Wang; Jiankang Wang; Changling Huang; Prasanna, B.M.; Olsen, M.; Guoying Wang; Zhang Aimin
    Publication
  • The genetic dissection of quantitative traits in crops
    (Pontificia Universidad Católica de Valparaíso, 2010) Semagn, K.; Bjornstad, A.; Yunbi Xu
    Most traits of interest in plant breeding show quantitative inheritance, which complicate the breeding process since phenotypic performances only partially reflects the genetic values of individuals. The genetic variation of a quantitative trait is assumed to be controlled by the collective effects of quantitative trait loci (QTLs), epistasis (interaction between QTLs), the environment, and interaction between QTL and environment. Exploiting molecular markers in breeding involve finding a subset of markers associated with one or more QTLs that regulate the expression of complex traits. Many QTL mapping studies conducted in the last two decades identified QTLs that generally explained a significant proportion of the phenotypic variance, and therefore, gave rise to an optimistic assessment of the prospects of markers assisted selection. Linkage analysis and association mapping are the two most commonly used methods for QTL mapping. This review provides an overview of the two QTL mapping methods, including mapping population type and size, phenotypic evaluation of the population, molecular profiling of either the entire or a subset of the population, marker-trait association analysis using different statistical methods and software as well as the future prospects of using markers in crop improvement.
    Publication