Person: Sehgal, D.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sehgal
First Name
D.
Name
Sehgal, D.
ORCID ID
0000-0002-4141-17848 results
Search Results
Now showing 1 - 8 of 8
- Genome-wide association analysis of Mexican bread wheat landraces for resistance to yellow and stem rust(Public Library of Science, 2021) Vikram, P.; Sehgal, D.; Sharma, A.R.; Bhavani, S.; Gupta, P.; Randhawa, M.S.; Pardo, N.; Basandrai, D.; Puja Srivastava; Singh, S.; Sood, T.; Sansaloni, C.; Rahman, H.; Singh, S.
Publication - Strategic use of Iranian bread wheat landrace accessions for genetic improvement: core set formulation and validation(Wiley, 2021) Vikram, P.; Franco, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Singh, V.K.; Sneller, C.; Sharma, A.R.; Tattaris, M.; Guzman, C.; Peña-Bautista, R.J.; Sansaloni, C.; Campos, J.; Thiyagarajan, K.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Velu, G.; Ellis, M.H.; Bhavani, S.; Jalal Kamali, M.R.; Roostaei, M.; Singh, S.; Basandrai, D.; Bains, N.; Basandrai, A.K.; Payne, T.S.; Crossa, J.; Singh, S.
Publication - GWAS revealed a novel resistance locus on chromosome 4D for the quarantine disease Karnal bunt in diverse wheat pre-breeding germplasm(Nature Publishing Group, 2020) Singh, S.; Sehgal, D.; Satish Kumar; Mian A. R. Arif; Vikram, P.; Sansaloni, C.; Fuentes Dávila, G.; Ortiz, C.
Publication - Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security(Nature Publishing Group, 2018) Singh, S.; Vikram, P.; Sehgal, D.; Burgueño, J.; Sharma, A.R.; Singh, S.K.; Sansaloni, C.; Joynson, R.; Brabbs, T.; Ortiz, C.; Solís Moya, E.; Velu, G.; Gupta, N.; Sidhu, H.S.; Basandrai, A.K.; Basandrai, D.; Ledesma-Ramires, L.; Suaste-Franco, M.P.; Fuentes Dávila, G.; Ireta Moreno, J.; Sonder, K.; Vaibhav K. Singh; Sajid Shokat; Shokat, S.; Mian A. R. Arif; Khalil A. Laghari; Puja Srivastava; Bhavani, S.; Satish Kumar; Pal, D.; Jaiswal, J.P.; Kumar, U.; Harinder K. Chaudhary; Crossa, J.; Payne, T.S.; Imtiaz, M.; Sohu, V.S.; Singh, G.P.; Bains, N.; Hall, A.J.W.; Pixley, K.V.The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.
Publication - Identification of genomic associations for adult plant resistance in the background of popular South Asian wheat cultivar, PBW343(Frontiers, 2016) Huihui Li; Singh, S.; Bhavani, S.; Singh, R.P.; Sehgal, D.; Basnet, B.R.; Vikram, P.; Burgueño, J.; Huerta-Espino, J.Rusts, a fungal disease as old as its host plant wheat, has caused havoc for over 8000 years. As the rust pathogens can evolve into new virulent races which quickly defeat the resistance that primarily rely on race specificity, adult plant resistance (APR) has often been found to be race non-specific and hence is considered to be a more reliable and durable strategy to combat this malady. Over decades sets of donor lines have been identified at International Maize and Wheat Improvement Center (CIMMYT) representing a wide range of APR sources in wheat. In this study, using nine donors and a common parent “PBW343,” a popular Green Revolution variety at CIMMYT, the nested association mapping (NAM) population of 1122 lines was constructed to understand the APR genetics underlying these founder lines. Thirty-four QTL were associated with APR to rusts, and 20 of 34 QTL had pleiotropic effects on SR, YR and LR resistance. Three chromosomal regions, associated with known APR genes (Sr58/Yr29/Lr46, Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34), were also identified, and 13 previously reported QTL regions were validated. Of the 18 QTL first detected in this study, 7 were pleiotropic QTL, distributing on chromosomes 3A, 3B, 6B, 3D, and 6D. The present investigation revealed the genetic relationship of historical APR donor lines, the novel knowledge on APR, as well as the new analytical methodologies to facilitate the applications of NAM design in crop genetics. Results shown in this study will aid the parental selection for hybridization in wheat breeding, and envision the future rust management breeding for addressing potential threat to wheat production and food security.
Publication - Unlocking the genetic diversity of Creole wheats(Nuture Publishing Group, 2016) Vikram, P.; Franco, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Sneller, C.; Tattaris, M.; Guzman, C.; Sansaloni, C.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Singh, P.K.; Payne, T.S.; Wenzl, P.; Sharma, A.R.; Bains, N.; Singh, G.P.; Crossa, J.; Singh, S.Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.
Publication - A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits(BioMed Central, 2015) Huihui Li; Vikram, P.; Singh, R.P.; Kilian, A.; Carling, J.; Jie Song; Burgueño, J.; Bhavani, S.; Huerta-Espino, J.; Payne, T.S.; Sehgal, D.; Wenzl, P.; Singh, S.Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers. Results: Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence. Conclusion: The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.
Publication - Exploring and mobilizing the Gene Bank Biodiversity for wheat improvement(Public Library of Science, 2015) Sehgal, D.; Vikram, P.; Sansaloni, C.; Ortiz, C.; Saint Pierre, C.; Payne, T.S.; Ellis, M.H.; Amri, A.; Petroli, C.; Wenzl, P.; Singh, S.Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT’s ongoing ‘Seeds of Discovery’ project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.
Publication