Person: Braun, H.J.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Braun
First Name
H.J.
Name
Braun, H.J.
ORCID ID
0000-0001-7944-804013 results
Search Results
Now showing 1 - 10 of 13
- Chapter 26. Translational research networks(Springer Nature, 2022) Reynolds, M.P.; Braun, H.J.; Flavell, R.; Gwyn, J.; Langridge, P.; Rosichan, J.L.; Sawkins, M.C.; Visscher, S.
Publication - Chapter 1. Wheat improvement(Springer Nature, 2022) Reynolds, M.P.; Braun, H.J.
Publication - Correction to: Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat (Euphytica, (2017), 213, 257, 10.1007/s10681-017-2040-z)(Springer, 2018) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Hakim M.A.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Sohail, Q.; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mahboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.
Publication - Harnessing translational research in wheat for climate resilience(Oxford University Press, 2021) Reynolds, M.P.; Lewis, J.; Ammar, K.; Basnet, B.R.; Crespo Herrera, L.A.; Crossa, J.; Dhugga, K.; Dreisigacker, S.; Juliana, P.; Karwat, H.; Kishii, M.; Krause, M.; Langridge, P.; Lashkari, A.; Mondal, S.; Payne, T.S.; Pequeno, D.N.L.; Pinto Espinosa, F.; Sansaloni, C.; Schulthess, U.; Singh, R.P.; Sonder, K.; Sukumaran, S.; Wei Xiong; Braun, H.J.
Publication - Translational research for climate resilient, higher yielding crops(Hapres, 2019) Reynolds, M.P.; Borrell, A.; Braun, H.J.; Edmeades, G.O.; Flavell, R.; Gwyn, J.; Jordan, D.; Pixley, K.V.; Rebetzke, G.J.
Publication - Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat(Springer, 2017) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Abdul Hakim, M.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Muhammad Kundi; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mehboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.To accelerate genetic gains in breeding, physiological trait (PT) characterization of candidate parents can help make more strategic crosses, increasing the probability of accumulating favorable alleles compared to crossing relatively uncharacterized lines. In this study, crosses were designed to complement “source” with “sink” traits, where at least one parent was selected for favorable expression of biomass and/or radiation use efficiency—source—and the other for sink-related traits like harvest-index, kernel weight and grains per spike. Female parents were selected from among genetic resources—including landraces and products of wide-crossing (i.e. synthetic wheat)—that had been evaluated in Mexico at high yield potential or under heat stress, while elite lines were used as males. Progeny of crosses were advanced to the F4 generation within Mexico, and F4-derived F5 and F6 generations were yield tested to populate four international nurseries, targeted to high yield environments (2nd and 3rd WYCYT) for yield potential, and heat stressed environments (2nd and 4th SATYN) for climate resilience, respectively. Each nursery was grown as multi-location yield trials. Genetic gains were achieved in both temperate and hot environments, with most new PT-derived lines expressing superior yield and biomass compared to local checks at almost all international sites. Furthermore, the tendency across all four nurseries indicated either the superiority of the best new PT lines compared with the CIMMYT elite checks, or the superiority of all new PT lines as a group compared with all checks, and in some cases, both. Results support—in a realistic breeding context—the hypothesis that yield and radiation use efficiency can be increased by improving source:sink balance, and validate the feasibility of incorporating exotic germplasm into mainstream breeding efforts to accelerate genetic gains for yield potential and climate resilience.
Publication - Improving global integration of crop research(American Association for the Advancement of Science, 2017) Reynolds, M.P.; Braun, H.J.; Cavalieri, A.J.; Chapotin, S.M.; Davies, W.; Ellul, P.; Feuillet, C.; Govaerts, B.; Kropff, Martinus; Lucas, H.; Nelson, J.M.; Powell, W.; Quilligan, E.; Rosegrant, M.W.; Singh, R.P.; Sonder, K.; Tang, H.; Visscher, S.; Wang, R.R.C.In recent decades, the scientific, development, and farm communities have contributed to substantial gains in crop productivity, including in many less developed countries (LDCs) (1), yet current yield trends and agri-food systems are inadequate to match projected demand (2). Addressing transnational crop challenges will require refinement of research infrastructure and better leverage of global expertise and technologies. Drawing on lessons learned from international collaboration in wheat, we outline how such a model could evolve into a Global Crop Improvement Network (GCIN) encompassing most staple food crops, providing access to well-controlled “field laboratories,” while harmonizing research practices and sharing data. Combined with socioeconomic and cropping systems research, a GCIN could revolutionize the ability to understand and model crop responses to environments globally and accelerate adoption of vital technologies.
Publication - International TRIGO (Wheat) Yield Potential, Proceedings; Cd. Obregon, Sonora, Mexico; 24-26 Mar 2015(CIMMYT, 2015) Reynolds, M.P.; Molero, G.; Mollins, J.; Braun, H.J.The abstracts herein are of presentations by crop experts for the “TRIGO (Wheat) Yield Potential Workshop”. Sponsored by SAGARPA’s international strategic component for increasing wheat performance, under the Sustainable Modernization of Traditional Agriculture Program (MasAgro); and CRP WHEAT. The event covers innovative methods to significantly raise wheat yield potential, including making photosynthesis more efficient, improving adaptation of flowering to diverse environments, addressing the physical processes involved in lodging, and physiological and molecular breeding. The workshop represents the current research of the MasAgro TRIGO project and CRP WHEAT that involves scientists working on all continents to strategically integrate research components in a common breeding platform, there by speeding the delivery to farmers of new wheat genotypes.
Publication - Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security(Springer Verlag, 2013) Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.P.; Muricho, G.Wheat is fundamental to human civilization and has played an outstanding role in feeding a hungry world and improving global food security. The crop contributes about 20 % of the total dietary calories and proteins worldwide. Food demand in the developing regions is growing by 1 % annually and varies from 170 kg in Central Asia to 27 kg in East and South Africa. The developing regions (including China and Central Asia) account for roughly 53 % of the total harvested area and 50 % of the production. Unprecedented productivity growth from the Green Revolution (GR) since the 1960s dramatically transformed world wheat production, benefitting both producers and consumers through low production costs and low food prices. Modern wheat varieties were adopted more rapidly than any other technological innovation in the history of agriculture, recently reaching about 90 % of the area in developing regions. One of the key challenges today is to replace these varieties with new ones for better sustainability. While the GR ?spared? essential ecosystems from conversion to agriculture, it also generated its own environmental problems. Also productivity increase is now slow or static. Achieving the productivity gains needed to ensure food security will therefore require more than a repeat performance of the GR of the past. Future demand will need to be achieved through sustainable intensification that combines better crop resistance to diseases and pests, adaptation to warmer climates, and reduced use of water, fertilizer, labor and fuel. Meeting these challenges will require concerted efforts in research and innovation to develop and deploy viable solutions. Substantive investment will be required to realize sustainable productivity growth through better technologies and policy and institutional innovations that facilitate farmer adoption and adaptation. The enduring lessons from the GR and the recent efforts for sustainable intensification of cereal systems in South Asia and other regions provide useful insights for the future.
Publication - International Workshop of the Wheat Yield Consortium, 3. Proceedings; Cd. Obregon, Sonora, Mexico; 5-7 Mar 2013(CIMMYT, 2013) Reynolds, M.P.; Braun, H.J.The abstracts herein are of presentations by crop experts for the ”3rd International Workshop of the Wheat Yield Consortium”. Sponsored by SAGARPA’s international strategic component for increasing wheat performance, under the Sustainable Modernization of Traditional Agriculture Program (MasAgro); and GRDC, Australia. The event covers innovative methods to significantly raise wheat yield potential, including making photosynthesis more efficient, improving adaptation of flowering to diverse environments, addressing the physical processes involved in lodging, and physiological and molecular breeding. The workshop represents the current research of the International Wheat Yield Consortium that involves scientists working on all continents to strategically integrate research components in a common breeding platform, thereby speeding the delivery to farmers of new wheat genotypes.
Publication