Person:
Mcdonald, Andrew

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Mcdonald
First Name
Andrew
Name
Mcdonald, A.

Search Results

Now showing 1 - 10 of 13
  • Context-dependent agricultural intensification pathways to increase rice production in India
    (Nature Publishing Group, 2024) Nayak, H.S.; Mcdonald, A.; Kumar, V.; Craufurd, P.; Dubey, S.; Nayak, A.K.; Parihar, C.M.; Panneerselvam, P.; Poonia, S. P.; Fantaye, K.T.; Malik, R.; Urfels, A.; Gautam, U.S.; Silva, J.V.
    Publication
  • Large survey dataset of rice production practices applied by farmers on their largest farm plot during 2018 in India
    (Elsevier, 2022) Anurag Ajay; Craufurd, P.; Kumar, V.; Samaddar, A.; Malik, R.; Sharma, S.; Ranjan, H.; Singh, A.K.; Paudel, G.; Pundir, A.; Poonia, S. P.; Kumar, A.; Kumar, Pankaj; Singh, D.K.; Singh, M.; Iftikar, W.; Ignatius, M.; Banik, N.C.; Mohapatra, B.K.; Sagwal, P.K.; Peramaiyan, P.; Mcdonald, A.
    Publication
  • Understanding decision processes in becoming a fee-for-hire service provider: a case study on direct seeded rice in Bihar, India
    (Elsevier, 2021) Brown, B.; Samaddar, A.; Singh, K.; Leipzig, A.; Anurag Kumar; Kumar, Pankaj; Singh, D.K.; Malik, R.; Craufurd, P.; Kumar, V.; Mcdonald, A.
    Publication
  • Weed germinable seedbanks of rice–wheat systems in the Eastern Indo-Gangetic Plains: do tillage and edaphic factors explain community variation?
    (Wiley, 2021) Lowry, C.J.; Brainard, D.C.; Kumar, V.; Smith, R.G.; Singh, M.; Kumar, Pankaj; Kumar, A.; Kumar, V.; Rajiv K. Joon; Jat, R.K.; Poonia, S. P.; Malik, R.; Mcdonald, A.
    Publication
  • Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region
    (Springer, 2021) Nandan, R.; Poonia, S. P.; Sati Shankar Singh; Chaitanya Prasad Nath; Kumar, V.; Malik, R.; Mcdonald, A.; Hazra, K.K.
    Publication
  • Intercomparison of crop establishment methods for improving yield and profitability in the rice-wheat system of Eastern India
    (Elsevier, 2020) Singh, M.; Kumar, Pankaj; Kumar, V.; Solanki, I.S.; Mcdonald, A.; Kumar, A.; Poonia, S. P.; Kumar, V.; Anurag Ajay; Singh, D.K.; Singh, B.; Singh, S.; Malik, R.
    Publication
  • Guidelines for dry seeded aman rice (DSR) in Bangladesh
    (IRRI, 2014) Gathala, M.K.; Sudhir-Yadav; Mazid, M.A.; Humphreys, E.; Ahmed, S.; Krupnik, T.J.; Rashid, M.H.; Chauhan, B.S.; Kumar, V.; Russell, T.; Saleque, M.A.; Kamboj, B.R.; Jat, M.L.; Malik, R.; Tiwari, T.P.; Mondal, M.; Rahmand, M.; Saha, A.; Hossain, K.; Saiful Islam; Mcdonald, A.
    Dry seeded rice (DSR) is becoming an attractive option for farmers as it has a much lower labor requirement than manually transplanted rice. Labor for transplanting rice has become scarce and costly because laborers are shifting from agriculture to industry, public works and services, and migrating abroad. DSR can be readily adopted by small farmers as well as large farmers, provided that the required machinery is locally available (e.g., through custom hire from agricultural service providers). Best practice involves using a 2- or 4-wheel tractor-drawn drill to seed in rows into nontilled or dry tilled soil, as for wheat. Because the soil is not puddled, DSR also has a lower water requirement for crop establishment, and may require less frequent irrigation than puddled transplanted rice grown with alternate wetting and drying water management during dry spells. Where arsenic contaminated groundwater is used, less irrigation means less arsenic brought to the soil surface. Furthermore, accumulation of arsenic in the grain and straw is much less if the soil is allowed to dry between irrigations to let air (oxygen) into the soil (“aerobic” conditions) than in continuously flooded rice.
    Publication
  • Integrated weed management in rice: training of trainers modules
    (CIMMYT, 2017) Kumar, V.; Yadav, A.K.; Malik, R.; Peramaiyan, P.; Kumar, A.; Krupnik, T.J.; Das, B.N.; Dubey, S.; Gautam, U.S.; Kumar, A.; Mishra, J.S.; Pathak, H.; Panwar, G.S.; Das, A.; Pattnaik, S.; Singh, S.; Mcdonald, A.
    In India, weeds are responsible for about 33% of total yield losses caused by pests, whereas insects and diseases are responsible for 26% and 20%, respectively. Weeds interfere with crops by competing for light, water, nutrients and space resulting in reduction of crop yield and quality. The yield reduction in any crop through weed competition depends on several factors such as weed flora and density, duration of competition, management practices and climatic conditions. Therefore, timely weed management is crucial for attaining optimal grain yield of a crop. However, none of the single weed control methods are effective for all weeds and to manage weeds effectively and sustainably in the long run, it is essential to develop and deploy flexible integrated weed management (IWM) practices. IWM consists of physical, cultural, chemical, and biological means developed on knowledge of weed ecology and biology. In addition, costs involved in weed management constitute a significant share of total cost of production. Weeds have also become major constraints in adoption of new resource-efficient (labor, water, and tillage) technologies such as direct-seeded rice and reduced/zero-till systems. In eastern India, hand weeding has traditionally been the most common practice of weed control in rice and other cereals crops. In recent years, because of rising scarcity of labor and increasing labor wages, farmers have started adopting herbicides for weed control. However, farmers have limited knowledge on proper herbicide handling, selection of herbicide molecules and their time of application, application technologies for better efficacy, and environmental and human health risks associated with their incorrect use. Therefore, there is a need to train and develop master trainers with a strong understanding of IWM, who will help to pass on this knowledge on to farmers. This training module covers critical topics on the principles and practices of IWM, in the context of Indian agriculture, where the majority of farmers are smallholders. Strong emphasis has been placed on hands-on learning and learning by experience. This module aims to provide guidance to the training facilitators to conduct rapid two-day trainings on IWM, including step-by-step detailed instructions on how to facilitate the training, training materials required for successfully conducting different sessions, and instructions on how to conduct hands-on trainings, field visits and practical sessions. IWM principles can be better learned through multiple training sessions combined with practical sessions, or as part of a farmer field school than a single classroom session covering different aspects of IWM. Hence, while this module covers five training sessions that can be conducted consecutively over two days, they can also be delivered as individual modules, for example, during a season-long farmer field school.
    Publication
  • Impact of conservation tillage in rice–based cropping systems on soil aggregation, carbon pools and nutrients
    (Elsevier, 2019) Nandan, R.; Vikram Singh; Sati Shankar Singh; Kumar, V.; Hazra, K.K.; Chaitanya Prasad Nath; Poonia, S. P.; Malik, R.; Ranjan Bhattacharyya; Mcdonald, A.
    Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice–growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR–CT), non–puddled transplant rice followed by zero–tillage in wheat/maize (NPTPR–ZT), zero–till transplant rice followed by zero–tillage in wheat/maize (ZTTPR–ZT), zero–tillage direct seeded rice followed by zero–tillage in wheat/maize (ZTDSR–ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice–wheat, rice–maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero–till crop establishment treatments (ZTTPR–ZT and ZTDSR–ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR–CT). Zero–till crop establishment treatments increased very–labile C faction (Cfrac1) by 21% followed by labile fraction (Cfrac2) (16%), non–labile fraction (Cfrac4) (13%) and less–labile fraction (Cfrac3) (7%). Notably, higher passive C–pool in conservation tillage practices over CTTPR–CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero–till crop establishment treatments had higher (p < 0.05) water stable macro–aggregates, macro–aggregates: micro–aggregates ratio and aggregate carbon content over CTTPR–CT. The treatment NPTPR–ZT significantly increased soil quality parameters over CTTPR–CT. However, the effect was not as prominent as that of ZTTPR–ZT and ZTDSR–ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available–P (16%), followed by available–K (12%), DTPA–extractable Zn (11%), and available–S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR–CT. Therefore, conservation tillage (particularly ZTTPR–ZT and ZTDSR–ZT) and crop residue retention could be recommended in tropical rice–based cropping systems for improving soil quality and production sustainability.
    Publication
  • Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: carbon dynamics and productivity
    (Elsevier, 2017) Samal, S. K.; Rao, K.K.; Poonia, S. P.; Kumar, R.; Mishra, J.S.; Prakash, V.; Mondal, S.; Dwivedi, S.K.; Bhatt, B. P.; Naik, S.K.; Choubey, A. K.; Kumar, V.; Malik, R.; Mcdonald, A.
    In the context of deteriorating soil health, stagnation of yield in rice-wheat cropping system (RWCS) across Indo- Gangetic plains (IGP) and environmental pollution, a long term field experiment was conducted during 2009–2016 taking four crop scenarios with conservation agriculture (CA), crop intensification and diversified cropping as intervening technology aiming to evaluate the sustainability of the systems. Scenario 1 (S1) represented conventional farmers’ practice of growing rice and wheat with summer fallow. In scenario 2 (S2) and scenario 3 (S3), legume crop was taken along with rice and wheat with partial CA and full CA, respectively. Conventional RWCS was replaced with rice-potato + maize- cowpea cropping system with partial CA in scenario 4 (S4). The S3 scenario registered highest total organic carbon (TOC) stock of 47.71 Mg C ha−1 and resulted in significant increase of 14.57% over S1 (Farmer’s practice) in 0–30 cm soil depth after 7 years of field trial. The S4 scenario having intensified cropping systems recorded lowest TOC of 39.33 Mg C ha−1 and resulted in significant depletion of 17.56% in C stock with respect to S3 in 0–30 cm soil depth. The TOC enrichment was higher in S2, S3 and S4 scenario in the surface soil (0–10 cm) compared to S1. At lower depth (20–30 cm), the TOC enrichment was significantly higher in S2 (12.82 Mg C ha−1) and S3 (13.10 Mg C ha−1 soil) over S1 scenario. The S2 and S3 scenario recorded highest increased allocation of TOC (3.55 and 6.13 Mg C ha−1) to passive pool over S1. The S2 (15.72 t ha−1), S3 (16.08 t ha−1) and S4 (16.39 t ha−1) scenarios recorded significantly higher system rice equivalent yield over S1 (10.30 t ha−1). Among the scenarios, S3 scenario had greater amount of total soil organic carbon, passive pool of carbon and higher system rice equivalent yield, thus, is considered the best cropping management practice to maintain soil health and food security in the middle IGP.
    Publication