Person:
Sonder, K.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sonder
First Name
K.
Name
Sonder, K.

Search Results

Now showing 1 - 5 of 5
  • Correction to: Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat (Euphytica, (2017), 213, 257, 10.1007/s10681-017-2040-z)
    (Springer, 2018) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Hakim M.A.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Sohail, Q.; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mahboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.
    Publication
  • Harnessing translational research in wheat for climate resilience
    (Oxford University Press, 2021) Reynolds, M.P.; Lewis, J.; Ammar, K.; Basnet, B.R.; Crespo Herrera, L.A.; Crossa, J.; Dhugga, K.; Dreisigacker, S.; Juliana, P.; Karwat, H.; Kishii, M.; Krause, M.; Langridge, P.; Lashkari, A.; Mondal, S.; Payne, T.S.; Pequeno, D.N.L.; Pinto Espinosa, F.; Sansaloni, C.; Schulthess, U.; Singh, R.P.; Sonder, K.; Sukumaran, S.; Wei Xiong; Braun, H.J.
    Publication
  • Climate change has increased genotype-environment interactions in wheat breeding
    (Research Square, 2020) Wei Xiong; Reynolds, M.P.; Crossa, J.; Payne, T.S.; Schulthess, U.; Sonder, K.; Addimando, N.; Singh, R.P.; Ammar, K.; Gerard, B.
    Publication
  • Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat
    (Springer, 2017) Reynolds, M.P.; Pask, A.; Hoppitt, W.J.E.; Sonder, K.; Sukumaran, S.; Molero, G.; Saint Pierre, C.; Payne, T.S.; Singh, R.P.; Braun, H.J.; González, F.G.; Terrile, I.I.; Barma, N.C.D.; Abdul Hakim, M.; He Zhonghu; Zheru Fan; Novoselovic, D.; Maghraby, M.; Gad, K.I.M.; Galal, E.G.; Hagras, A.; Mohamed M. Mohamed; Morad, A.F.A.; Kumar, U.; Singh, G.P.; Naik, R.; Kalappanavar, I.K.; Biradar, S.; Prasad, S.V.S.; Chatrath, R.; Sharma, I.; Panchabhai, K.; Sohu, V.S.; Gurvinder Singh Mavi; Mishra, V.K.; Balasubramaniam, A.; Jalal Kamali, M.R.; Khodarahmi, M.; Dastfal, M.; Tabib Ghaffary, S.M.; Jafarby, J.; Nikzad, A.R.; Moghaddam, H.A.; Hassan Ghojogh; Mehraban, A.; Solís Moya, E.; Camacho Casas, M.A.; Figueroa, P.; Ireta Moreno, J.; Alvarado Padilla, J.I.; Borbón Gracia, A.; Torres, A.; Quiche, YN.; Upadhyay, S.R.; Pandey, D.; Imtiaz, M.; Rehman, M.U.; Hussain, M.; Ud-din, R.; Qamar, M.; Muhammad Kundi; Mujahid, M.Y.; Ahmad, G.; Khan, A.J.; Mehboob Ali Sial; Mustatea, P.; Well, E. von; Ncala, M.; Groot, S. de; Hussein, A.H.A.; Tahir, I.S.A.; Idris, A.A.M.; Elamein, H.M.M.; Yann Manes; Joshi, A.K.
    To accelerate genetic gains in breeding, physiological trait (PT) characterization of candidate parents can help make more strategic crosses, increasing the probability of accumulating favorable alleles compared to crossing relatively uncharacterized lines. In this study, crosses were designed to complement “source” with “sink” traits, where at least one parent was selected for favorable expression of biomass and/or radiation use efficiency—source—and the other for sink-related traits like harvest-index, kernel weight and grains per spike. Female parents were selected from among genetic resources—including landraces and products of wide-crossing (i.e. synthetic wheat)—that had been evaluated in Mexico at high yield potential or under heat stress, while elite lines were used as males. Progeny of crosses were advanced to the F4 generation within Mexico, and F4-derived F5 and F6 generations were yield tested to populate four international nurseries, targeted to high yield environments (2nd and 3rd WYCYT) for yield potential, and heat stressed environments (2nd and 4th SATYN) for climate resilience, respectively. Each nursery was grown as multi-location yield trials. Genetic gains were achieved in both temperate and hot environments, with most new PT-derived lines expressing superior yield and biomass compared to local checks at almost all international sites. Furthermore, the tendency across all four nurseries indicated either the superiority of the best new PT lines compared with the CIMMYT elite checks, or the superiority of all new PT lines as a group compared with all checks, and in some cases, both. Results support—in a realistic breeding context—the hypothesis that yield and radiation use efficiency can be increased by improving source:sink balance, and validate the feasibility of incorporating exotic germplasm into mainstream breeding efforts to accelerate genetic gains for yield potential and climate resilience.
    Publication
  • Improving global integration of crop research
    (American Association for the Advancement of Science, 2017) Reynolds, M.P.; Braun, H.J.; Cavalieri, A.J.; Chapotin, S.M.; Davies, W.; Ellul, P.; Feuillet, C.; Govaerts, B.; Kropff, Martinus; Lucas, H.; Nelson, J.M.; Powell, W.; Quilligan, E.; Rosegrant, M.W.; Singh, R.P.; Sonder, K.; Tang, H.; Visscher, S.; Wang, R.R.C.
    In recent decades, the scientific, development, and farm communities have contributed to substantial gains in crop productivity, including in many less developed countries (LDCs) (1), yet current yield trends and agri-food systems are inadequate to match projected demand (2). Addressing transnational crop challenges will require refinement of research infrastructure and better leverage of global expertise and technologies. Drawing on lessons learned from international collaboration in wheat, we outline how such a model could evolve into a Global Crop Improvement Network (GCIN) encompassing most staple food crops, providing access to well-controlled “field laboratories,” while harmonizing research practices and sharing data. Combined with socioeconomic and cropping systems research, a GCIN could revolutionize the ability to understand and model crop responses to environments globally and accelerate adoption of vital technologies.
    Publication