Person: Shepelev, S.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Shepelev
First Name
S.
Name
Shepelev, S.
ORCID ID
0000-0002-4282-87253 results
Search Results
Now showing 1 - 3 of 3
- Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in Western Siberia(Genetics Society of America, 2019) Bhatta, M.R.; Shamanin, V.; Shepelev, S.; Baenziger, P.S.; Pozherukova, V.E.; Pototskaya, I.V.; Morgounov, A.
Publication - Primary hexaploid synthetics: novel sources of wheat disease resistance(Elsevier, 2019) Shamanin, V.; Shepelev, S.; Pozherukova, V.E.; Gultyaeva, E.; Kolomiets, T.; Pakholkova, E.V.; Morgounov, A.Climate change is leading to increased occurrence of and yield losses to wheat diseases. Managing these diseases by introducing new, effective and diverse resistance genes into cultivars represents an important component of sustainable wheat production. In 2016 and 2017 a set of primary hexaploid synthetic wheat was studied under high disease pressure: powdery mildew, leaf and stem rust in Omsk; Septoria tritici and S. nodorum in Moscow. A total of 28 synthetics (19 CIMMYT synthetics and 9 Japanese synthetics) were selected as having combined resistance to at least two diseases in both years of testing. Two synthetics (entries 13 and 18) originating from crosses between winter durum wheat Ukrainka odesskaya-1530.94 and various Aegilopes taushii accessions, and four synthetics (entries 20, 21, 23 and 24) from cross between Canadian durum wheat Langdon and Ae. taushii were resistant to all four pathogens. Pathological and molecular markers evaluation of resistance suggests presence of new genes and diverse types of resistance. The novel genetic sources of disease resistance identified in this study can be successfully utilized in wheat breeding.
Publication - Evaluation of synthetic wheat lines (Triticum durum/Aegilops tausсhii) for vegetative period and resistance to diseases(Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 2017) Shamanin, V.; Pototskaya, I.V.; Shepelev, S.; Pozherukova, V.E.; Truschenko, A. Yu; Chursin, A.S.; Morgounov, A.The growth of the total wheat production and increase of yield stability from year to year are some of the pri-orities of agriculture in Russia. The yield of commercial varieties signi cantly diversi es due to huge losses of their potential under the in uence of negative biotic and abiotic factors. Increase of resistance to stress factors in the emerging varieties can be achievedby utilizing the diversity of the genetic resources of relat-ed wild species and genera in crosses. The results of a phenotypic evaluation of the synthetic hexaploid wheat lines of CIMMYT breeding created by crossing durum wheat varieties from Institute of Breeding and Genetics (Odessa, Ukraine) and variety Pandur from Romania (T. durum Desf., AB genome) with Aegilops (Ae. tausshii Coss., D genome), and also 15 synthetic wheat lines of Kyoto University breeding (Japan) creat ed by crossing durum wheat variety Langdon with di erent ecological forms Aegilops are presented. Research was performed on the experimental eld of Omsk SAU under conditions of southern forest-steppe of West Siberia in 2016. Between synthetics, there was revealed a genotypic di erence in the vegetative peri-od duration and resistance to diseases. Lines of hybrid combination Aisberg/Ae.sq.(511) were characterized as the most early-maturity genotypes among the lines studied. The hybrid combinations Ae.sq.(369) with va-riety Aisberg, Ae.sq.(310) and Ukr-Od 1530, Ae.sq.(223) and Pandur are characterized by complex resistance to fungal diseases. Most of the lines demonstrated high and moderate resistance to rust fungus, severity rang-ing from 5 to 70 % and severity of powdery mildew being 10–90 %. Lines derived from variety Ukr-Od 1530.94 and accessions Ae. tauschii (392); (629); (1027); (1031) and lines Langdon/Ku-2074; Langdon/Ku-2075; Langdon/Ku-2100; Langdon/Ku-2079 are character-ized by complex resistance to powdery mildew, leaf and stem rust. The synthetic lines with a complex of economically valuable traits present interest as an initial material for breeding programs. Key words: synthetic wheat; phenotyping; vegetative period; leaf and stem rust; powdery mildew; resistance.
Publication