Person:
Mutinda, C.J.M.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Mutinda
First Name
C.J.M.
Name
Mutinda, C.J.M.

Search Results

Now showing 1 - 3 of 3
  • On-farm performance and farmers’ participatory assessment of new stress-tolerant maize hybrids in Eastern Africa
    (Elsevier, 2020) Regasa, M.W.; De Groote, H.; Munyua, B.G.; Makumbi, D.; Owino, F.; Crossa, J.; Beyene, Y.; Mugo, S.N.; Jumbo, M.B; Asea, G.; Mutinda, C.J.M.; Kwemoi, D.B.; Woyengo, V.; Olsen, M.; Prasanna, B.M.
    Publication
  • Combining ability of maize (Zea mays L.) inbred lines resistant to stem borers
    (Academic Journals, 2011) Beyene, Y.; Mugo, S.N.; Gakunga, J.; Karaya, H.; Mutinda, C.J.M.; Tadele Tefera; Njoka, S.; Chepkesis, D.; Shuma, J.M.; Tende, R.
    Ten inbred parents with varying resistance levels to Chilo partellus and Busseola fusca were crossed in a half diallel mating scheme to generate 45 F1 hybrids. The hybrids and five commercial checks were evaluated across four locations in Kenya under artificial and natural infestation in 2009. Genotype (G) by environment (E) interaction (G x E) was non-significant for stem borer leaf damage, number of exit holes and tunnel length, suggesting that screening for stem borer resistance at one location would be adequate. On the other hand, G x E and general combining ability (GCA) x environment interactions were highly significant for gray leaf spot and turcicum leaf blight, indicating an inbred line resistance to a disease in one location may have a different reaction to the same disease in another location. The results of combining ability analysis showed that GCA effects were significant for stem borer resistance traits (leaf damage scores, number of exit holes, and tunnel length) while the opposite was true for specific combining ability (SCA) effects. Parents 5, 2, 6, 9 and 3, were good sources of genes for higher grain yield while parents 1 and 4 were good sources of resistance genes for stem borers. Hybrid 5 x 9 was the best performing hybrid in grain yield (6.53 t/ha) across the locations, while hybrid 1 x 4 was the least performing in grain yield (3.08 t/ha). The source of stem borer resistance identified in the study may be useful for improving levels of stem borer resistance in maize breeding programs in eastern and southern Africa.
    Publication
  • Genotype by environment interactions and yield stability of stem borer resistant maize hybrids in Kenya
    (Academic Journals, 2011) Beyene, Y.; Mugo, S.N.; Mutinda, C.J.M.; Tadele Tefera; Karaya, H.; Ajanga, S.; Shuma, J.M.; Tende, R.; Kega, V.
    In a maize breeding program, potential genotypes are usually evaluated in different environments before desirable ones are selected. Genotype x environment (G x E) interaction is associated with the differential performance of genotypes tested at different locations and in different years, and influences selection and recommendation of cultivars. Twenty one stem borer resistance maize hybrids and four commercial checks were evaluated in six environments in Kenya under infestation with Chilo partellus and Busseola fusca to determine the G x E interactions and stability of the hybrids. Analysis of variance was conducted for grain yield, days to flowering and plant and ear height. Stability for grain yield was determined using genotype plus genotype by environment interaction (GGE) biplot analysis. Variances due to genotype, environment and G x E interaction effects were highly significant for all traits. The GGE biplot showed that four experimental hybrids and two commercial checks had positive PC1 score indicating above average performance across environments. However, 10 experimental hybrids and two commercial checks had negative PC1 score, suggesting poor average performance. Experimental hybrids, CKIR07004 and CKIR07013, were highly desirable in terms of grain yield (>7.5 t/ha) and stability across environments. These hybrids could be released in Kenya and similar environments.
    Publication