Person:
Tadele Tefera

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tadele Tefera
First Name
Name
Tadele Tefera

Search Results

Now showing 1 - 10 of 10
  • Performance of Bt maize event MON810 in controlling maize stem borers Chilo partellus and Busseola fusca in Uganda
    (Elsevier, 2022) Otim, M.; Alibu. S.; Asea, G.; Abalo, G.; Sserumaga, J.P.; Adumo, S.; Alupo, J.; Ochen, S.; Tadele Tefera; Bruce, A.Y.; Beyene, Y.; Meisel, B.; Tende, R.; Nang’ayo, F.; Baguma, Y.; Mugo, S.N.; Oikeh, S.O.
    Publication
  • Phenotypic and genotypic variation in tropical maize inbred lines for resistance to the maize weevil and larger grain borer
    (Transstellar Journal Publications, 2012) Mwololo, J.; Okori, P.; Mugo, S.N.; Tadele Tefera; Beyene, Y.; Otim, M.; Munyiri, S.W.
    Publication
  • Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya
    (Elsevier, 2016) Tadele Tefera; Mugo, S.N.; Mwimali, M.; Bruce, A.Y.; Tende, R.; Beyene, Y.; Gichuki, S.T.; Oikeh, S.O.; Nang’ayo, F.; Okeno, J.; Njeru, E.; Pillay, K.; Meisel, B.; Prasanna, B.M.
    A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids) against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons during 2013e2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with 10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH, plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha1), followed by non-Bt hybrids (6.9 t ha1) and commercial checks (6 t ha1). Bt-hybrids had the least number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased yield, reduced insecticide inputs, and improved food security.
    Publication
  • Responses of tropical maize landraces to damage by Chilo partellus stem borer
    (Academic Journals, 2013) Munyiri, S.W.; Mugo, S.N.; Otim, M.; Tadele Tefera; Beyene, Y.; Mwololo, J.; Okori, P.
    The potential to manage insect pests using host-plant resistance exists, but has not been exploited adequately. The objective of this study was to determine the resistance of 75 tropical maize landraces through artificial infestation with Chilo partellusSwinhoe. The trial was laid in alpha-lattice design and each seedling was infested with five neonates three weeks after planting, over two seasons in 2009 and 2010. The number of exit holes, tunnel length, ear diameter, ear length, plant height, stem diameter, stem lodging and grain yield were measured and a selection index computed. GUAT 1050 was the most resistant with an index of 0.56, while BRAZ 2179 was the most susceptible with an index of 1.66. Ear characteristics were negatively correlated with damage parameters. The principal component biplot suggested that exit holes, cumulative tunnel length, leaf damage, cob diameter, stem lodging, selection index, ear and plant height contributed 71.2% of the variation in resistance. The mean number of exit holes and tunnel length for resistant landraces and resistant hybrid checks were similar; at 5.5 and 2.48 cm, respectively. The identified resistant landraces (GUAT 1050, GUAT 280, GUAT 1093, GUAT 1082, GUAT 1014, CHIS 114, and GUAN 34) could be used to develop C. partellus stem borer-resistant maize genotypes.
    Publication
  • Testcross performance of doubled haploid maize lines derived from tropical adapted backcross populations
    (Consiglio per la Ricerca e la sperimentazione in Agricoltura, Unità di Ricerca per la Maiscoltura, 2011) Beyene, Y.; Mugo, S.N.; Pillay, K.; Tadele Tefera; Ajanga, S.; Njoka, S.; Karaya, H.; Gakunga, J.
    Doubled haploid (DH) lines produced by in vivo induction of maternal haploids are routinely used in maize breeding. The present study was carried out to assess the performance of 75 doubled haploid maize testcrosses and six checks tested across four locations in Kenya for grain yield, agronomic traits and reaction to major leaf diseases. The 75 DH lines were derived from the backcross (BC1) plants of two CIMMYT bi-parental crosses. Significant location, genotype and genotype x location effects were observed for grain yield and anthesis-silking interval (ASI). Genotypes were significantly different for reaction to leaf blight and gray leaf spot. Location explained 69% of the total phenotypic variance while both genotype and genotype by environment interaction effects contributed 4% each. Fifteen DH testcross hybrids yielded better than the best commercial check, WH505 (5.1 t/ha). The best DH testcross hybrid (CKDHH0223) averaged over the four locations yielded 29.5% higher than WH505. These results indicate that maize testcrosses developed from DH lines produced as high a grain yield and as acceptable agronomic traits as the commercial hybrids developed through conventional pedigree methods. The DH lines identified in the study may be useful for improving yield and disease resistance in maize breeding programs in eastern and southern Africa.
    Publication
  • Yield stability of stem borer resistant maize hybrids evaluated in regional trials in east Africa
    (Academic Journals, 2012) Beyene, Y.; Mugo, S.N.; Tadele Tefera; Gethi, J.; Gakunga, J.; Ajanga, S.; Karaya, H.; Musila, R.N.; Muasya, W.; Tende, R.; Njoka, S.
    Twenty-seven stem borer-resistant maize hybrids and three checks were evaluated in 14 locations in Kenya and Ethiopia to study the genotype x environment interaction (GEI) and yield stability. An analysis of variance was conducted for grain yield, number of days to silking, plant height, ear height and grain moisture content, and reaction to turcicum leaf blight, gray leaf spot, maize streak virus diseases and common rust. The yield stability and adaptation pattern of genotypes were examined with genotype plus genotype x environment (GGE) interaction biplot. Variations due to location, genotype and GEI effects were highly significant for all traits. Location variance among the hybrids was the most important source of variation for all traits, accounting for 58 to 90% of the total variance. The genotypic variance was higher than the GEI variance for turcicum leaf blight, plant height and silking date. The GEI variance was higher than the genotypic variance for grain yield, ear height, gray leaf spot, common rust and grain moisture content. The GGE biplot showed that 50% of the entries had positive PC1 scores suggesting above average performance, and 50% of them had negative PC1 scores indicating below average performance. Based on the mean grain yield and stability parameters, hybrid CKIR07003 (5.5 t/ha), CKIR07004 (5.5 t/ha) and CKIR07005 (5.6 t /ha) were identified as high-yielding and stable genotypes, and could be nominated for national performance trials for commercial release in various countries.
    Publication
  • Grain yield, stem borer and disease resistance of new maize hybrids in Kenya
    (Academic Journals, 2011) Tadele Tefera; Mugo, S.N.; Beyene, Y.; Karaya, H.; Tende, R.
    Evaluation of 30 maize hybrids for yield and resistance to stem borers and foliar diseases in four agro-ecologies in Kenya was conducted in 2009. There were significant differences among the hybrids in leaf damage, number of exit holes, tunnel length and grain yield in Kiboko. The maize hybrids CKPH08014, CKPH08025, and CKPH08026 showed the least leaf damage, exit holes and tunnel length, similar to the resistant check. Although ten hybrids yielded over 8 t/ha, two hybrids, CKPH09001 and CKPH08033, gave the highest yield of 8.99 and 8.86 t/ha, respectively, in Kiboko. There were significant differences among the hybrids in resistance to leaf rust and maize streak virus in Kakamega. The intensity of foliar diseases was high in Kakamega compared to the other sites. All hybrids appeared resistant to the foliar diseases at Kakamega. On the average, the highest yield of the hybrids was recorded in Kiboko (7.5 t/ha) followed by Kakamega (6.1 t/ha), and the least at Embu (3.5 t/ha), and Mtwapa (3.14 t/ha). The performance of the hybrids varied from site to site, with CKPH09002 and CKPH09003 performing well at Mtwapa, CKPH09001 at Kiboko, CKPH08039 at Embu, CKPH 08002 and CKPH08010 at Kakamega.
    Publication
  • Genotype by environment interactions and yield stability of stem borer resistant maize hybrids in Kenya
    (Academic Journals, 2011) Beyene, Y.; Mugo, S.N.; Mutinda, C.J.M.; Tadele Tefera; Karaya, H.; Ajanga, S.; Shuma, J.M.; Tende, R.; Kega, V.
    In a maize breeding program, potential genotypes are usually evaluated in different environments before desirable ones are selected. Genotype x environment (G x E) interaction is associated with the differential performance of genotypes tested at different locations and in different years, and influences selection and recommendation of cultivars. Twenty one stem borer resistance maize hybrids and four commercial checks were evaluated in six environments in Kenya under infestation with Chilo partellus and Busseola fusca to determine the G x E interactions and stability of the hybrids. Analysis of variance was conducted for grain yield, days to flowering and plant and ear height. Stability for grain yield was determined using genotype plus genotype by environment interaction (GGE) biplot analysis. Variances due to genotype, environment and G x E interaction effects were highly significant for all traits. The GGE biplot showed that four experimental hybrids and two commercial checks had positive PC1 score indicating above average performance across environments. However, 10 experimental hybrids and two commercial checks had negative PC1 score, suggesting poor average performance. Experimental hybrids, CKIR07004 and CKIR07013, were highly desirable in terms of grain yield (>7.5 t/ha) and stability across environments. These hybrids could be released in Kenya and similar environments.
    Publication
  • Combining ability of maize (Zea mays L.) inbred lines resistant to stem borers
    (Academic Journals, 2011) Beyene, Y.; Mugo, S.N.; Gakunga, J.; Karaya, H.; Mutinda, C.J.M.; Tadele Tefera; Njoka, S.; Chepkesis, D.; Shuma, J.M.; Tende, R.
    Ten inbred parents with varying resistance levels to Chilo partellus and Busseola fusca were crossed in a half diallel mating scheme to generate 45 F1 hybrids. The hybrids and five commercial checks were evaluated across four locations in Kenya under artificial and natural infestation in 2009. Genotype (G) by environment (E) interaction (G x E) was non-significant for stem borer leaf damage, number of exit holes and tunnel length, suggesting that screening for stem borer resistance at one location would be adequate. On the other hand, G x E and general combining ability (GCA) x environment interactions were highly significant for gray leaf spot and turcicum leaf blight, indicating an inbred line resistance to a disease in one location may have a different reaction to the same disease in another location. The results of combining ability analysis showed that GCA effects were significant for stem borer resistance traits (leaf damage scores, number of exit holes, and tunnel length) while the opposite was true for specific combining ability (SCA) effects. Parents 5, 2, 6, 9 and 3, were good sources of genes for higher grain yield while parents 1 and 4 were good sources of resistance genes for stem borers. Hybrid 5 x 9 was the best performing hybrid in grain yield (6.53 t/ha) across the locations, while hybrid 1 x 4 was the least performing in grain yield (3.08 t/ha). The source of stem borer resistance identified in the study may be useful for improving levels of stem borer resistance in maize breeding programs in eastern and southern Africa.
    Publication
  • Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae)
    (Academic Journals, 2009) Abebe, F.; Tadele Tefera; Mugo, S.N.; Beyene, Y.; Vidal, S.
    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize varieties were screened for their relative susceptibility to S. zeamais. The Dobie index of susceptibility was used to group the varieties. The variety, ?BHQP-542?, had the least index of susceptibility and was regarded as resistant. The varieties, ?Katumani?, ?Melkasa-I?, ?Melkasa-II?, ?Melkasa-III?, ?Coree?, ?BH-541?, ?BH-660?, ?BH-540?, ?Rare-I?, ?Awasa-511?, ?ACV3? and ?ACV6?, were moderately resistant. Weevils fed with the resistant variety produced low numbers of F1 progeny, had a high median developmental time and a low percentage of seed damage and seed weight loss. Maize varieties with a high F1 progeny tended to have a short median developmental time. An increasing number of F1 progeny resulted in an increasing seed damage and seed weight loss. We found an inverse relationship between the susceptibility index and percent mortality and median developmental time; however, the numbers of F1 progeny, percent seed damage and seed weight loss were positively related with the susceptibility index. The use of resistant varieties should be promoted in managing S. zeamais in stored maize under subsistence farming conditions in Africa.
    Publication