Person:
Tadele Tefera

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tadele Tefera
First Name
Name
Tadele Tefera

Search Results

Now showing 1 - 2 of 2
  • Responses of tropical maize landraces to damage by Chilo partellus stem borer
    (Academic Journals, 2013) Munyiri, S.W.; Mugo, S.N.; Otim, M.; Tadele Tefera; Beyene, Y.; Mwololo, J.; Okori, P.
    The potential to manage insect pests using host-plant resistance exists, but has not been exploited adequately. The objective of this study was to determine the resistance of 75 tropical maize landraces through artificial infestation with Chilo partellusSwinhoe. The trial was laid in alpha-lattice design and each seedling was infested with five neonates three weeks after planting, over two seasons in 2009 and 2010. The number of exit holes, tunnel length, ear diameter, ear length, plant height, stem diameter, stem lodging and grain yield were measured and a selection index computed. GUAT 1050 was the most resistant with an index of 0.56, while BRAZ 2179 was the most susceptible with an index of 1.66. Ear characteristics were negatively correlated with damage parameters. The principal component biplot suggested that exit holes, cumulative tunnel length, leaf damage, cob diameter, stem lodging, selection index, ear and plant height contributed 71.2% of the variation in resistance. The mean number of exit holes and tunnel length for resistant landraces and resistant hybrid checks were similar; at 5.5 and 2.48 cm, respectively. The identified resistant landraces (GUAT 1050, GUAT 280, GUAT 1093, GUAT 1082, GUAT 1014, CHIS 114, and GUAN 34) could be used to develop C. partellus stem borer-resistant maize genotypes.
    Publication
  • Yield stability of stem borer resistant maize hybrids evaluated in regional trials in east Africa
    (Academic Journals, 2012) Beyene, Y.; Mugo, S.N.; Tadele Tefera; Gethi, J.; Gakunga, J.; Ajanga, S.; Karaya, H.; Musila, R.N.; Muasya, W.; Tende, R.; Njoka, S.
    Twenty-seven stem borer-resistant maize hybrids and three checks were evaluated in 14 locations in Kenya and Ethiopia to study the genotype x environment interaction (GEI) and yield stability. An analysis of variance was conducted for grain yield, number of days to silking, plant height, ear height and grain moisture content, and reaction to turcicum leaf blight, gray leaf spot, maize streak virus diseases and common rust. The yield stability and adaptation pattern of genotypes were examined with genotype plus genotype x environment (GGE) interaction biplot. Variations due to location, genotype and GEI effects were highly significant for all traits. Location variance among the hybrids was the most important source of variation for all traits, accounting for 58 to 90% of the total variance. The genotypic variance was higher than the GEI variance for turcicum leaf blight, plant height and silking date. The GEI variance was higher than the genotypic variance for grain yield, ear height, gray leaf spot, common rust and grain moisture content. The GGE biplot showed that 50% of the entries had positive PC1 scores suggesting above average performance, and 50% of them had negative PC1 scores indicating below average performance. Based on the mean grain yield and stability parameters, hybrid CKIR07003 (5.5 t/ha), CKIR07004 (5.5 t/ha) and CKIR07005 (5.6 t /ha) were identified as high-yielding and stable genotypes, and could be nominated for national performance trials for commercial release in various countries.
    Publication