Person:
Tadele Tefera

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Tadele Tefera
First Name
Name
Tadele Tefera

Search Results

Now showing 1 - 10 of 19
  • Phenotypic and genotypic variation in tropical maize inbred lines for resistance to the maize weevil and larger grain borer
    (Transstellar Journal Publications, 2012) Mwololo, J.; Okori, P.; Mugo, S.N.; Tadele Tefera; Beyene, Y.; Otim, M.; Munyiri, S.W.
    Publication
  • Combined effect of hermetic bag and insect resistant variety for the control of larger grain borer and maize weevil in stored maize
    (International Journal of Science and Research, 2015) Likhayo, P.; Tadele Tefera; Mugo, S.N.; Mueke, J.
    Publication
  • Antibiosis mechanism of resistance to Larger Grain Borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in maize
    (Asian Network for Scientific Information, 2014) Nhamucho, E.; Mugo, S.N.; Kinyua, M.G.; Gohole, L.; Tadele Tefera; Mulima, E.P.
    Publication
  • Maize grain stored in hermetic bags: effect of moisture and pest infestation on grain quality
    (Hindawi Publishing Corporation, 2018) Likhayo, P.; Bruce, A.Y.; Tadele Tefera; Mueke, J.
    Maize (Zea mays) is an important staple food crop produced by the majority of smallholder farmers that provides household food security through direct consumption and income generation. However, postharvest grain losses caused by insect pests during storage pose a major constraint to household food security. Hermetic storage technology is an alternative method that minimises postharvest losses by depleting oxygen and increasing carbon dioxide levels within the storage container through metabolic respiration of the grains, insects, and microorganism. Maize grain was stored for 180 days in hermetic bags or open-weave polypropylene bags to compare quality preservation when subject to initial grain moisture contents of 12, 14, 16, and 18 percent and infestation by Sitophilus zeamais. e moisture content of grain in hermetic bags remained unchanged while in polypropylene bags decreased. Dry grains (12% moisture content) stored well in hermetic bags and su ered 1.2% weight loss while for equivalent grains in polypropylene bags the weight loss was 35.8%. Moist grains (18% moisture content) recorded the lowest insect density (7 adults/kg grain) in hermetic bags while polypropylene bags had the highest (1273 adults/kg grain). Hermetic and polypropylene bags recorded the lowest (0–4 adults/kg grain) and highest (16–41 adults/kg grain) Prostephanus truncatus population, respectively. Discoloured grains were 4, 6, and 12 times more in grains at 14, 16, and 18 than 12 percent moisture content in hermetic bags. Grains at 18% moisture content recorded signicantly lower oxygen (10.2%) and higher carbon dioxide (18.9%) levels. Holes made by P. truncatus in the hermetic bags were observed. In conclusion, storage of moist grains (14–18% moisture content) in hermetic bags may pose health risk due to grain discolouration caused by fungal growth that produces mycotoxins if the grains enter the food chain. e study was on only one site which was hot and dry and further investigation under cool, hot, and humid conditions is required.
    Publication
  • Metal silo grain storage technology and household food security in Kenya
    (Academic Journals, 2015) Gitonga, Z.; De Groote, H.; Tadele Tefera
    A treatment effect and ordered logit models were used to evaluate the impact of metal silo storage technology on household food security and factors influencing adoption of metal silo. Farmers’ perception of the effectiveness of metal silo against larger grain borer and maize weevil was also analyzed. The most important factor households considered when choosing a storage facility was effectiveness against storage pests followed by security of the stored grain and durability of the storage facility. Metal silo adopters had 1.8 months more of adequate food provisioning than non-adopters. Compared to non-adopting households, metal silo adopters only sold a little portion of their maize initially to meet immediate cash needs and kept the bulk of it until the fifth month after harvest. Consumption was stable throughout the year for the metal silo adopters. Non-adopters sold most of their maize immediately after harvest and consumption was higher than sales. Household size, literacy of the household head and land size increased the likelihood of adopting the metal silo technology. Households with access to financial services (bank account and/or mobile money) were more likely to adopt metal silo. Distance to the nearest passable road reduced odds of adopting metal silo technology. The use of metal silos prevented damage by larger grain borer (LGB) and maize weevil for 98% and 94% of adopters, respectively. This study finds evidence that metal silo technology is effective against main maize storage pests and its adoption can significantly improve food security in rural households.
    Publication
  • Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya
    (Elsevier, 2016) Tadele Tefera; Mugo, S.N.; Mwimali, M.; Bruce, A.Y.; Tende, R.; Beyene, Y.; Gichuki, S.T.; Oikeh, S.O.; Nang’ayo, F.; Okeno, J.; Njeru, E.; Pillay, K.; Meisel, B.; Prasanna, B.M.
    A study was conducted to assess the performance of maize hybrids with Bt event MON810 (Bt-hybrids) against the maize stem borer Busseola fusca (Fuller) in a biosafety greenhouse (BGH) and against the spotted stem borer Chilo partellus (Swinhoe) under confined field trials (CFT) in Kenya for three seasons during 2013e2014. The study comprised 14 non-commercialized hybrids (seven pairs of near-isogenic Bt and non-Bt hybrids) and four non-Bt commercial hybrids. Each plant was artificially infested twice with 10 first instar larvae. In CFT, plants were infested with C. partellus 14 and 24 days after planting; in BGH, plants were infested with B. fusca 21 and 31 days after planting. In CFT, the seven Bt hybrids significantly differed from their non-Bt counterparts for leaf damage, number of exit holes, percent tunnel length, and grain yield. When averaged over three seasons, Bt-hybrids gave the highest grain yield (9.7 t ha1), followed by non-Bt hybrids (6.9 t ha1) and commercial checks (6 t ha1). Bt-hybrids had the least number of exit holes and percent tunnel length in all the seasons as compared to the non-Bt hybrids and commercial checks. In BGH trials, Bt-hybrids consistently suffered less leaf damage than their non-Bt near isolines. The study demonstrated that MON810 was effective in controlling B. fusca and C. partellus. Bt-maize, therefore, has great potential to reduce the risk of maize grain losses in Africa due to stem borers, and will enable the smallholder farmers to produce high-quality grain with increased yield, reduced insecticide inputs, and improved food security.
    Publication
  • Addressing climate change effects and meeting maize demand for Asia
    (GMRI, 2011) Zaidi, P.; Babu, R.; Cairns, J.E.; Jeffers, D.P.; Kha, L.Q.; Krishna, G.; Krishna, V.; Mcdonald, A.; Ortiz-Ferrara, G.; Palacios-Rojas, N.; Pixley, K.V.; Prasanna, B.M.; Rashid, Z.; Tadele Tefera; Tiwari, T.P.; Vinayan, M.T.; Vengadessan, V.; Fan, X.M.; Yunbi Xu; Weidong, C.; Zhang, S.; Vivek, B.
    This includes the extended summaries of the scientific presentations made during the 11th Asian Maize Conference held in Nanning, China, during 7-11 November 2011. The Conference is co-organized by the International Maize and Wheat Improvement Center (CIMMYT), and the Guangxi Maize Research Institute (GMRI), China. The theme of the workshop is "Addressing Climate Change Effects and Meeting Maize Demand for Asia". The 11th AMC brings together over 300 maize scientists, researchers and students from public and private sectors, including participants from several Asian countries, including Bangladesh, Bhutan, China, Colombia, India, Indonesia, Iran, Nepal, Philippines, Thailand, Turkey, Vietnam, besides Italy, Kenya, New Zealand, Mexico, Germany, Myanmar and the USA. The Conference features over 225 presentations, including keynote lectures, invited oral presentations, and poster presentations, besides scientific deliberations and discussions on maize in Asia. The extended summaries includes reviews and research papers on a diverse range of topics, including maize trends, challenges and opportunities in Asia, abiotic and biotic stresses affecting maize production, novel tools for maize improvement, conservation agriculture, nutritional enrichment of maize, participatory plant breeding, community-based seed production, public-private partnerships, maize value chains, policies and socio-economics relevant to Asia.
    Publication
  • Responses of tropical maize landraces to damage by Chilo partellus stem borer
    (Academic Journals, 2013) Munyiri, S.W.; Mugo, S.N.; Otim, M.; Tadele Tefera; Beyene, Y.; Mwololo, J.; Okori, P.
    The potential to manage insect pests using host-plant resistance exists, but has not been exploited adequately. The objective of this study was to determine the resistance of 75 tropical maize landraces through artificial infestation with Chilo partellusSwinhoe. The trial was laid in alpha-lattice design and each seedling was infested with five neonates three weeks after planting, over two seasons in 2009 and 2010. The number of exit holes, tunnel length, ear diameter, ear length, plant height, stem diameter, stem lodging and grain yield were measured and a selection index computed. GUAT 1050 was the most resistant with an index of 0.56, while BRAZ 2179 was the most susceptible with an index of 1.66. Ear characteristics were negatively correlated with damage parameters. The principal component biplot suggested that exit holes, cumulative tunnel length, leaf damage, cob diameter, stem lodging, selection index, ear and plant height contributed 71.2% of the variation in resistance. The mean number of exit holes and tunnel length for resistant landraces and resistant hybrid checks were similar; at 5.5 and 2.48 cm, respectively. The identified resistant landraces (GUAT 1050, GUAT 280, GUAT 1093, GUAT 1082, GUAT 1014, CHIS 114, and GUAN 34) could be used to develop C. partellus stem borer-resistant maize genotypes.
    Publication
  • Quality of field collected and laboratory reared Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) for screening maize genotypes
    (Academic Journals, 2013) Mutisya, D.; Tadele Tefera; Mugo, S.N.
    The quality of laboratory reared stem borer species for screening of maize varieties is usually questioned by end user cereal breeders. A quality check study was performed in a screen house at KARI-Katumani to evaluate the quality of eight-year old laboratory reared stem borer, Chilo partellus (Swinhoe). The evaluation was aimed at finding out the performance of the laboratory borers subjected to six-month interval of gene infusion in comparison with wild F1 generation of the same species collected from the field. One hundred (100) maize seedlings were grown on plastic pots of 5 by 5 cm and of 12 cm-height. The maize seedlings were infested with five first instar larvae on eight plants replicated four times for each borer ecotype. The wild ecotypes were collected from two different localities for comparison with eight-year old laboratory reared borers. Foliar damage, tunnel length on the maize stems and the recovered number of C. partellus larvae from the maize plants were used as the parameters for quality measure of the borer ecotypes. The laboratory-reared stem borer species had been subjected to frequent six-month gene-infusion interval from the wild. The results indicated feedvoracity drop of 3.8 and 21.5% for stem and foliar damage on the laboratory borer ecotype. The study established the need for continuous gene infusion to maintain high quality maize stem borer species as test organisms.
    Publication
  • Sources of resistance to the maize weevil Sitophilus Zeamais in tropical maize
    (Canadian Center of Science and Education, 2012) Mwololo, J.; Mugo, S.N.; Okori, P.; Tadele Tefera; Otim, M.; Munyiri, S.W.
    The maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae), is among the major storage pests that enhance food insecurity among maize farmers. New sources of resistance to the maize weevil are critical in a successful breeding program to address grain damage by postharvest pests. The objective of the study was to evaluate resistance in maize genotypes to the maize weevil, and consequently their value for use in breeding programs. A total of 175 genotypes, including hybrids, landraces, open-pollinated varieties and checks, were tested for resistance to the maize weevil. The percentage grain damage, weight loss, flour weight and weight of damaged and undamaged grains were measured. Significant differences (P <0.001) were observed among the genotypes for all the traits evaluated. The distribution of the genotypes among the different categories of resistance was an indication of the existence of genetic variation. The most resistant genotypes were CKPH08003 and BRAZ 2451 while the most susceptible were PH 3254 and BRAZ 4, among the hybrids and landraces respectively. Genotypes that were superior to the resistant checks were identified. The percentage weight loss and flour weight were identified as the most important insect-resistance traits for discriminating genotypes as evident from the canonical discriminant analysis. Correlation coefficients among the traits evaluated were highly significant. The resistant hybrids identified can be recommended for release and adoption by farmers, whereas the resistant landraces can act as sources of resistance for use in breeding programs.
    Publication