Person: Nicol, J.M.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Nicol
First Name
J.M.
Name
Nicol, J.M.
3 results
Search Results
Now showing 1 - 3 of 3
- Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) and root lesion nematodes (Pratylenchus neglectus and P. thornei) in CIMMYT advanced spring wheat lines for semi-arid conditions(Japanese Society of Breeding, 2016) Dababat, A.A.; Gomez-Becerra, H.F.; Erginbas Orakci, G.; Dreisigacker, S.; Imren, M.; Toktay, H.; Elekcioglu, I.H.; Tesfamariam Mekete; Nicol, J.M.; Ansari, O.; Ogbonnaya, F.C.To identify loci linked to nematode resistance genes, a total of 126 of CIMMYT advanced spring wheat lines adapted to semi-arid conditions were screened for resistance to Heterodera avenae, Pratylenchus neglectus, and P. thornei, of which 107 lines were genotyped with 1,310 DArT. Association of DArT markers with nematode response was analyzed using the general linear model. Results showed that 11 markers were associated with resistance to H. avenae (pathotype Ha21), 25 markers with resistance to P. neglectus, and 9 significant markers were identified to be linked with resistance to P. thornei. In this work we confirmed that chromosome 4A (~90–105 cM) can be a source of resistance to P. thornei as has been recently reported. Other significant markers were also identified on chromosomal regions where no resistant genes have been reported for both nematodes species. These novel QTL were mapped to chromosomes 5A, 6A, and 7A for H. avenae; on chromosomes 1A, 1B, 3A, 3B, 6B, 7AS, and 7D for P. neglectus; and on chromosomes 1D, 2A, and 5B for P. thornei and represent potentially new loci linked to resistance that may be useful for selecting parents and deploying resistance into elite germplasm adapted to regions where nematodes are causing problem.
Publication - Screening for resistance to Heterodera filipjevi (Madzhidov) Stelter (Tylenchida: Heteroderidae) and Pratylenchus thornei (Sher & Allen) (Tylenchida: Pratylenchidae) sister lines of spring wheat(Entomological Society Turkey, Ege University, 2012) Toktay, H.; Yavuzaslanoglu, E.; Imren, M.; Nicol, J.M.; Elekcioglu, I.H.; Dababat, A.A.Breeding for resistance to the cereal cyst nematodes (CCN) Heterodera filipjevi (Madzhidov,) Stelter, and H. avenae (Wollenweber) and to the root lesion nematode (RLN) Pratylenchus thornei (Sher & Allen) is presently being undertaken by breeding programs at research institutions in Turkey. This study was carried out to screen for nematode resistance in an advanced spring bread wheat breeding population, 42 lines (F9) developed at CIMMYT in Mexico, by crossing resistant parent the Middle- Eastern landrace AUS4930 7.2 and susceptible parent, the widely adapted, high yielding CIMMYT line, Pastor. The results demonstrate that 31 lines are resistant to P. thornei and 5 lines are resistant to H. filipjevi. Only 4 of these lines (2, 7, 23 and 41) are resistant to both nematodes. Lines 2, 7 and 41 also contain the known resistance gene, Cre1. Although some lines carry the Cre1 gene, they are susceptible to either both or one of these nematodes. There is no association among H. filipjevi, P. thornei and Cre1 resistance due to differences in the resistance region in the plant genome.
Publication - Improved methodology for resistance screening in spring wheat against the root lesion nematode, Pratylenchus thornei (Sher et Allen) (Tylenchida: Pratylenchidae)(Entomological Society Turkey, Ege University, 2012) Toktay, H.; Imren, M.; Nicol, J.M.; Dababat, A.A.; Elekcioglu, I.H.The root lesion nematode, Pratylenchus thornei (Sher et Allen) is a polyphagous and economically important nematode in wheat production systems, particularly in rainfed environments. Chemical management of this nematode is not economically or environmentally sound, leaving cultural practices like crop rotation as the most widely accepted option. Long-term control is best achieved in established wheat monoculture systems through genetic improvement, which provides both economic and environmental benefits to the growers. Intensive screening under controlled conditions can facilitate and accelerate the identification of resistance and its subsequent deployment in commercial wheat cultivars. In this study, a number of variables were assessed to optimize P. thornei screening, including initial nematode density, soil type, container size, reference cultivars, harvest time and watering regime with perlite. Growth room experiments showed clear separation between the resistant and susceptible cultivars, using sandy growth edium (70:29:1 sand, field soil and organic matter), small container (15 mm diameter x 100 mm in long), inoculation density with 400 individuals per plant, 9 week growing period and bottom perlite irrigation system.
Publication