Person: Banziger, M.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Banziger
First Name
M.
Name
Banziger, M.
ORCID ID
0000-0002-8330-799341 results
Search Results
Now showing 1 - 10 of 41
- Impact of CGIAR maize germplasm in Sub-Saharan Africa(Elsevier, 2023) Krishna, V.; Lantican, M.A.; Prasanna, B.M.; Pixley, K.V.; Abdoulaye, T.; Menkir, A.; Banziger, M.; Erenstein, O.
Publication - Market intelligence for informing crop-breeding decisions by CGIAR and NARES(CIMMYT, 2022) Donovan, J.; Coaldrake, P.; Rutsaert, P.; Banziger, M.; Mbugua-Gitonga, A.; Naziri, D.; Demont, M.; Newby, J.; Ndegwa, M.
Publication - Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries(Public Health Services, 2006) Strosnider, H.; Azziz-Baumgartner, E.; Banziger, M.; Bhat, R.V.; Breiman, R.; Brune, M.N.; DeCock, K.; Dilley, A.; Groopman, J.; Hell, K.; Henry, S.H.; Jeffers, D.P.; Jolly, C.; Jolly, P.; Kibata, G.N.; Lewis, L.; Xiumei Liu; Luber, G.; McCoy, L.; Mensah, P.; Miraglia, M.; Misore, A.; Njapau, H.; Ong, C.N.; Onsongo, M.T.K.; Page, S.W.; Park, D.; Patel, M.B.; Phillips, T.D.; Pineiro, M.; Pronczuk, J.; Rogers, H.S.; Rubin, C.; Sabino, M.; Schaafsma, A.; Shephard, G.; Stroka, J.; Wild, C.; Williams, J.T.; Wilson, D.L.
Publication - Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress(CSSA, 2015) Beyene, Y.; Semagn, K.; Mugo, S.N.; Tarekegne, A.T.; Babu, R.; Meisel, B.; Sehabiague, P.; Makumbi, D.; Magorokosho, C.; Oikeh, S.O.; Gakunga, J.; Vargas Hernández, M.; Olsen, M.; Prasanna, B.M.; Banziger, M.; Crossa, J.
Publication - Climate change and food security in the developing world: potential of maize and wheat research to expand options for adaptation and mitigation(Academic Journals, 2012) Hellin, J.; Shiferaw, B.; Cairns, J.E.; Reynolds, M.P.; Ortiz-Monasterio, I.; Banziger, M.; Sonder, K.; La Rovere, R.
Publication - Impacts of CGIAR maize improvement in sub-Saharan Africa, 1995-2015(CIMMYT, 2021) Krishna, V.; Lantican, M.A.; Prasanna, B.M.; Pixley, K.V.; Abdoulaye, T.; Menkir, A.; Banziger, M.; Erenstein, O.
Publication - Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints(Nature Publishing Group, 2020) Sansaloni, C.; Franco, J.; Santos, B.; Percival-Alwyn, L.; Singh, S.; Petroli, C.; Campos, J.; Dreher, K.; Payne, T.S.; Marshall, D.S.; Kilian, B.; Milne, I.; Raubach, S.; Shaw, P.D.; Stephen, G.; Carling, J.; Saint Pierre, C.; Burgueño, J.; Crossa, J.; Huihui Li; Guzman, C.; Kehel, Z.; Amri, A.; Kilian, A.; Wenzl, P.; Uauy, C.; Banziger, M.; Caccamo, M.; Pixley, K.V.
Publication - Excellence in Breeding Platform: Linkage with STMA(CIMMYT, 2018) Olsen, M.; Quinn, M.; Hearne, S.; Kotch, G.P.; Vadez, V.; Robbins, K.; Banziger, M.
Publication - Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize(Springer, 2014) Almeida, G.D.; Nair, S.K.; Borem, A.; Cairns, J.E.; Trachsel, S.; Ribaut, J.M.; Banziger, M.; Prasanna, B.M.; Crossa, J.; Babu, R.Identifying quantitative trait loci (QTL) of sizeable effects that are expressed in diverse genetic backgrounds across contrasting water regimes particularly for secondary traits can significantly complement the conventional drought tolerance breeding efforts. We evaluated three tropical maize biparental populations under water-stressed and well-watered regimes for drought-related morpho-physiological traits, such as anthesis-silking interval (ASI), ears per plant (EPP), stay-green (SG) and plant-to-ear height ratio (PEH). In general, drought stress reduced the genetic variance of grain yield (GY), while that of morpho-physiological traits remained stable or even increased under drought conditions. We detected consistent genomic regions across different genetic backgrounds that could be target regions for marker-assisted introgression for drought tolerance in maize. A total of 203 QTL for ASI, EPP, SG and PEH were identified under both the water regimes. Meta-QTL analysis across the three populations identified six constitutive genomic regions with a minimum of two overlapping traits. Clusters of QTL were observed on chromosomes 1.06, 3.06, 4.09, 5.05, 7.03 and 10.04/06. Interestingly, a ~8-Mb region delimited in 3.06 harboured QTL for most of the morpho-physiological traits considered in the current study. This region contained two important candidate genes viz., zmm16 (MADS-domain transcription factor) and psbs1(photosystem II unit) that are responsible for reproductive organ development and photosynthate accumulation, respectively. The genomic regions identified in this study partially explained the association of secondary traits with GY. Flanking single nucleotide polymorphism markers reported herein may be useful in marker-assisted introgression of drought tolerance in tropical maize.
Publication - Growing farmer-saved seed of improved, open-pollinate maize varieties(CIMMYT, 2006) Mhike, X.; Nyakanda, P.; Setimela, P.; Banziger, M.; Listman, G.M.; Luna Avila, A.
Publication