Person: González Pérez, L.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
González Pérez
First Name
L.
Name
González Pérez, L.
ORCID ID
0000-0002-5840-08034 results
Search Results
Now showing 1 - 4 of 4
- Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat(Genetics Society of America, 2019) Krause, M.; González Pérez, L.; Crossa, J.; Pérez-Rodríguez, P.; Montesinos-Lopez, O.A.; Singh, R.P.; Dreisigacker, S.; Poland, J.; Rutkoski, J.; Sorrells, M.E.; Gore, M.A.; Mondal, S.Hyperspectral reflectance phenotyping and genomic selection are two emerging technologies that have the potential to increase plant breeding efficiency by improving prediction accuracy for grain yield. Hyperspectral cameras quantify canopy reflectance across a wide range of wavelengths that are associated with numerous biophysical and biochemical processes in plants. Genomic selection models utilize genome-wide marker or pedigree information to predict the genetic values of breeding lines. In this study, we propose a multi-kernel GBLUP approach to genomic selection that uses genomic marker-, pedigree-, and hyperspectral reflectance-derived relationship matrices to model the genetic main effects and genotype × environment (G × E) interactions across environments within a bread wheat (Triticum aestivum L.) breeding program. We utilized an airplane equipped with a hyperspectral camera to phenotype five differentially managed treatments of the yield trials conducted by the Bread Wheat Improvement Program of the International Maize and Wheat Improvement Center (CIMMYT) at Ciudad Obregón, México over four breeding cycles. We observed that single-kernel models using hyperspectral reflectance-derived relationship matrices performed similarly or superior to marker- and pedigree-based genomic selection models when predicting within and across environments. Multi-kernel models combining marker/pedigree information with hyperspectral reflectance phentoypes had the highest prediction accuracies; however, improvements in accuracy over marker- and pedigree-based models were marginal when correcting for days to heading. Our results demonstrate the potential of using hyperspectral imaging to predict grain yield within a multi-environment context and also support further studies on the integration of hyperspectral reflectance phenotyping into breeding programs.
Publication - Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat(Springer, 2019) Juliana, P.; Montesinos-Lopez, O.A.; Crossa, J.; Mondal, S.; González Pérez, L.; Poland, J.; Huerta-Espino, J.; Crespo Herrera, L.A.; Velu, G.; Dreisigacker, S.; Shrestha, S.; Pérez-Rodríguez, P.; Pinto Espinosa, F.; Singh, R.P.Genomic selection and high-throughput phenotyping (HTP) are promising tools to accelerate breeding gains for high-yielding and climate-resilient wheat varieties. Hence, our objective was to evaluate them for predicting grain yield (GY) in drought-stressed (DS) and late-sown heat-stressed (HS) environments of the International maize and wheat improvement center?s elite yield trial nurseries. We observed that the average genomic prediction accuracies using fivefold cross-validations were 0.50 and 0.51 in the DS and HS environments, respectively. However, when a different nursery/year was used to predict another nursery/year, the average genomic prediction accuracies in the DS and HS environments decreased to 0.18 and 0.23, respectively. While genomic predictions clearly outperformed pedigree-based predictions across nurseries, they were similar to pedigree-based predictions within nurseries due to small family sizes. In populations with some full-sibs in the training population, the genomic and pedigree-based prediction accuracies were on average 0.27 and 0.35 higher than the accuracies in populations with only one progeny per cross, indicating the importance of genetic relatedness between the training and validation populations for good predictions. We also evaluated the item-based collaborative filtering approach for multivariate prediction of GY using the green normalized difference vegetation index from HTP. This approach proved to be the best strategy for across-nursery predictions, with average accuracies of 0.56 and 0.62 in the DS and HS environments, respectively. We conclude that GY is a challenging trait for across-year predictions, but GS and HTP can be integrated in increasing the size of populations screened and evaluating unphenotyped large nurseries for stress?resilience within years.
Publication - Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper‑spectral image data(BioMed Central, 2017) Montesinos-López, A.; Montesinos-Lopez, O.A.; Cuevas, J.; Mata Lopez, W.A.; Burgueño, J.; Mondal, S.; Huerta-Espino, J.; Singh, R.P.; Autrique, E.; González Pérez, L.; Crossa, J.Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1–8, 2017) and wheat (Montesinos-López et al. in Plant Methods 13(4):1–23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or pedigree information.
Publication - Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data(BioMed Central, 2017) Montesinos-Lopez, O.A.; Montesinos-López, A.; Crossa, J.; De Los Campos, G.; Alvarado Beltrán, G.; Mondal, S.; Rutkoski, J.; González Pérez, L.; Burgueño, J.Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT’s global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.
Publication