Person:
González Pérez, L.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
González Pérez
First Name
L.
Name
González Pérez, L.

Search Results

Now showing 1 - 3 of 3
  • High-resolution airborne hyperspectral imagery for assessing yield, biomass, grain N concentration, and N output in spring wheat
    (MDPI, 2021) Raya-Sereno, M.D.; Ortiz-Monasterio, I.; Alonso-Ayuso, M.; Rodrigues, F.; Rodríguez, A.A.; González Pérez, L.; Quemada, M.
    Publication
  • Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper‑spectral image data
    (BioMed Central, 2017) Montesinos-López, A.; Montesinos-Lopez, O.A.; Cuevas, J.; Mata Lopez, W.A.; Burgueño, J.; Mondal, S.; Huerta-Espino, J.; Singh, R.P.; Autrique, E.; González Pérez, L.; Crossa, J.
    Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1–8, 2017) and wheat (Montesinos-López et al. in Plant Methods 13(4):1–23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or pedigree information.
    Publication
  • Predicting grain yield using canopy hyperspectral reflectance in wheat breeding data
    (BioMed Central, 2017) Montesinos-Lopez, O.A.; Montesinos-López, A.; Crossa, J.; De Los Campos, G.; Alvarado Beltrán, G.; Mondal, S.; Rutkoski, J.; González Pérez, L.; Burgueño, J.
    Modern agriculture uses hyperspectral cameras to obtain hundreds of reflectance data measured at discrete narrow bands to cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra, depending on the camera. This information is used to construct vegetation indices (VI) (e.g., green normalized difference vegetation index or GNDVI, simple ratio or SRa, etc.) which are used for the prediction of primary traits (e.g., biomass). However, these indices only use some bands and are cultivar-specific; therefore they lose considerable information and are not robust for all cultivars. This study proposes models that use all available bands as predictors to increase prediction accuracy; we compared these approaches with eight conventional vegetation indexes (VIs) constructed using only some bands. The data set we used comes from CIMMYT’s global wheat program and comprises 1170 genotypes evaluated for grain yield (ton/ha) in five environments (Drought, Irrigated, EarlyHeat, Melgas and Reduced Irrigated); the reflectance data were measured in 250 discrete narrow bands ranging between 392 and 851 nm. The proposed models for the simultaneous analysis of all the bands were ordinal least square (OLS), Bayes B, principal components with Bayes B, functional B-spline, functional Fourier and functional partial least square. The results of these models were compared with the OLS performed using as predictors each of the eight VIs individually and combined. We found that using all bands simultaneously increased prediction accuracy more than using VI alone. The Splines and Fourier models had the best prediction accuracy for each of the nine time-points under study. Combining image data collected at different time-points led to a small increase in prediction accuracy relative to models that use data from a single time-point. Also, using bands with heritabilities larger than 0.5 only in Drought as predictor variables showed improvements in prediction accuracy.
    Publication