Person:
Amri, A.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Amri
First Name
A.
Name
Amri, A.

Search Results

Now showing 1 - 5 of 5
  • Reaching into the past to tackle new challenges: improving wheat by conserving wild ‘goat grass’
    (CGIAR Genebank Platform, 2019) Aberkane, H.; Kishii, M.; Amri, A.; Payne, T.S.; Smale, M.; Jamora, N.
    The availability of synthetic hexaploid wheat (SHW) widens the genetic base for bread wheat improvement. ICARDA and CIMMYT hold 1,570 accessions of goat grass (Aegilops tauschii). More than 600 accessions were used to develop 1,577 SHW since 1986. Over 10
    Publication
  • CGIAR Operations under the Plant Treaty Framework
    (Crop Science Society of America (CSSA), 2019) Lopez Noriega, I.; Halewood, M.; Abberton, M.; Amri, A.; Angarawai, I.I.; Anglin, N.L.; Blummel, M.; Bouman, B.; Campos, H.; Costich, D.E.; Ellis, D.; Gaur, P.; Guarino, L.; Hanson, J.; Kommerell, V.; Kumar, P.L.; Lusty, C.; Ndjiondjop, M.N.; Payne, T.S.; Peters, M.; Popova, E.; Prakash, G.; Sackville Hamilton, N.R.; Tabo, R.; Upadhyaya, H.D.; Yazbek, M.; Wenzl, P.
    The history of CGIAR and the development and implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture ("Plant Treaty") are closely intertwined. In accordance with the agreements that 11 CGIAR centers signed with the Plant Treaty's Governing Body under Article 15 of the treaty, >730,000 accessions of crop, tree, and forage germplasm conserved in CGIAR genebanks are made available under the terms and conditions of the multilateral system of access and benefit sharing, and the CGIAR centers have transferred almost 4 million samples of plant genetic resources under the system. Many activities of CGIAR centers and their genebanks (e.g., crop enhancement, improved agronomic methods, seed system strengthening, and capacity building) are influenced by, and promote, the Plant Treaty's objectives. The continued existence and optimal functioning of the Plant Treaty's multilateral system of access and benefit sharing is critically important to CGIAR in the pursuit of its mission. However, the multilateral system has encountered some challenges since the Plant Treaty came into force. The successful conclusion of the ongoing process for enhancing the functioning of the multilateral system could increase monetary benefit sharing and incentives for exchanging more germplasm. In the meantime, increased efforts are necessary to promote nonmonetary benefit sharing through partnerships, technology transfer, information exchange, and capacity building. These efforts should be integrated into countries' and organizations' work to implement the Plant Treaty's provisions on conservation and sustainable use of plant genetic resources, and farmers' rights.
    Publication
  • Genome-wide genetic diversity and population structure of tunisian durum wheat landraces based on DArTseq technology
    (MDPI, 2019) Robbana, C.; Kehel, Z.; Ben Naceur, M.; Sansaloni, C.; Bassi, F.; Amri, A.
    Tunisia, being part of the secondary center of diversity for durum wheat, has rich unexploited landraces that are being continuously lost and replaced by high yielding modern cultivars. This study aimed to investigate the genetic diversity and population structure of 196 durum wheat lines issued from landraces collected from Tunisia using Diversity Array Technology sequencing (DArTseq) and to understand possible ways of introduction in comparing them to landraces from surrounding countries. A total of 16,148 polymorphic DArTseq markers covering equally the A and B genomes were effective to assess the genetic diversity and to classify the accessions. Cluster analysis and discriminant analysis of principal components (DAPC) allowed us to distinguish five distinct groups that matched well with the farmer's variety nomenclature. Interestingly, Mahmoudi and Biskri landraces constitute the same gene pool while Jenah Zarzoura constitutes a completely different group. Analysis of molecular variance (AMOVA) showed that the genetic variation was among rather than within the landraces. DAPC analysis of the Tunisian, Mediterranean and West Asian landraces confirmed our previous population structure and showed a genetic similarity between the Tunisian and the North African landraces with the exception of Jenah Zarzoura being the most distant. The genomic characterization of the Tunisian collection will enhance their conservation and sustainable use.
    Publication
  • Exploring and mobilizing the Gene Bank Biodiversity for wheat improvement
    (Public Library of Science, 2015) Sehgal, D.; Vikram, P.; Sansaloni, C.; Ortiz, C.; Saint Pierre, C.; Payne, T.S.; Ellis, M.H.; Amri, A.; Petroli, C.; Wenzl, P.; Singh, S.
    Identifying and mobilizing useful genetic variation from germplasm banks to breeding programs is an important strategy for sustaining crop genetic improvement. The molecular diversity of 1,423 spring bread wheat accessions representing major global production environments was investigated using high quality genotyping-by-sequencing (GBS) loci, and gene-based markers for various adaptive and quality traits. Mean diversity index (DI) estimates revealed synthetic hexaploids to be genetically more diverse (DI= 0.284) than elites (DI = 0.267) and landraces (DI = 0.245). GBS markers discovered thousands of new SNP variations in the landraces which were well known to be adapted to drought (1273 novel GBS SNPs) and heat (4473 novel GBS SNPs) stress environments. This may open new avenues for pre-breeding by enriching the elite germplasm with novel alleles for drought and heat tolerance. Furthermore, new allelic variation for vernalization and glutenin genes was also identified from 47 landraces originating from Iraq, Iran, India, Afghanistan, Pakistan, Uzbekistan and Turkmenistan. The information generated in the study has been utilized to select 200 diverse gene bank accessions to harness their potential in pre-breeding and for allele mining of candidate genes for drought and heat stress tolerance, thus channeling novel variation into breeding pipelines. This research is part of CIMMYT’s ongoing ‘Seeds of Discovery’ project visioning towards the development of high yielding wheat varieties that address future challenges from climate change.
    Publication
  • Progress in host plant resistance in wheat to Russian wheat aphid (Hemiptera: Aphididae) in North Africa and West Asia
    (Southern Cross Publishing Group, 2011) Bouhssini, M. El; Ogbonnaya, F.C.; Ketata, H.; Mosaad, M.M.; Street, K.; Amri, A.; Keser, M.; Rajaram, S.; Morgounov, A.; Rihawi, F.; Dabus, A.; Smith, C.M.
    Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is an important pest of wheat and barley in several countries of North Africa and West Asia, e.g., Morocco, Algeria, Tunisia, Ethiopia, Yemen, Turkey and Iran. Host plant resistance is the most economical and practical means of controlling this insect. Field and greenhouse screening of introduced and local wheat germplasm at ICARDA resulted in the identification of several sources of resistance which were subsequently incorporated into ICARDA elite wheat germplasm and distributed as RWA gene pool to NARS (National Agricultural Research Systems) in affected countries. Crosses were initiated in 1998 to introgress resistance into winter/facultative bread wheat and the segregating populations were evaluated for RWA resistance and agronomic performance at the ICARDA Experiment Station at Tel Hadya. Selected advanced lines were sent to North African, and West Asian countries for evaluation of RWA and disease resistance and agronomic adaptation under local conditions. Additional identified sources of RWA resistance are now in use in the ICARDA wheat breeding program. Haplotype analysis using molecular markers previously identified as diagnostic for Dn resistance genes revealed that some recently identified resistance sources are unrelated to previously described Dn1-Dn9 genes, and may represent new genes for deployment in RWA breeding. These apparent novel resistance gene(s) could be effective against some of the more virulent biotypes and could be deployed in breeding programs to increase the diversity of available genetic resistances. The reaction of wheat differentials containing different Dn genes indicates that the Syrian RWA biotype is less virulent than US RWA2 biotype.
    Publication