Person: Chuanxiao Xie
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Chuanxiao Xie
First Name
Name
Chuanxiao Xie
ORCID ID
0000-0003-3425-02112 results
Search Results
Now showing 1 - 2 of 2
- Identification and functional characterization of the AGO1 ortholog in maize(Wiley, 2016) Dongdong Xu; Hailong Yang; Cheng Zou; Wen-Xue Li; Yunbi Xu; Chuanxiao XieEukaryotic Argonaute proteins play primary roles in miRNA and siRNA pathways that are essential for numerous developmental and biological processes. However, the functional roles of the four ZmAGO1 genes have not yet been characterized in maize (Zea mays L.). In the present study, ZmAGO1a was identified from four putative ZmAGO1 genes for further characterization. Complementation of the Arabidopsis ago1-27 mutant with ZmAGO1a indicated that constitutive overexpression of ZmAGO1a could restore the smaller rosette, serrated leaves, later flowering and maturation, lower seed set, and darker green leaves at late stages of the mutant to the wild-type phenotype. The expression profiles of ZmAGO1a under five different abiotic stresses indicated that ZmAGO1a shares expression patterns similar to those of Argonaute genes in rice, Arabidopsis, and wheat. Further, variation in ZmAGO1a alleles among diverse maize germplasm that resulted in several amino acid changes revealed genetic diversity at this locus. The present data suggest that ZmAGO1a might be an important AGO1 ortholog in maize. The results presented provide further insight into the function of ZmAGO1a.
Publication - An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design(Nature Publishing Group, 2016) Yongping Zhao; Congsheng Zhang; Wenwen Liu; Wei Gao; Changlin Liu; Gaoyuan Song; Wen-Xue Li; Long Mao; Beijiu Cheng; Yunbi Xu; Xinhai Li; Chuanxiao XiePrecision DNA/gene replacement is a promising genome-editing tool that is highly desirable for molecular engineering and breeding by design. Although the CRISPR/Cas9 system works well as a tool for gene knockout in plants, gene replacement has rarely been reported. Towards this end, we first designed a combinatory dual-sgRNA/Cas9 vector (construct #1) that successfully deleted miRNA gene regions (MIR169a and MIR827a). The deletions were confirmed by PCR and subsequent sequencing, yielding deletion efficiencies of 20% and 24% on MIR169a and MIR827a loci, respectively. We designed a second structure (construct #2) that contains sites homologous to Arabidopsis TERMINAL FLOWER 1 (TFL1) for homology-directed repair (HDR) with regions corresponding to the two sgRNAs on the modified construct #1. The two constructs were co-transformed into Arabidopsis plants to provide both targeted deletion and donor repair for targeted gene replacement by HDR. Four of 500 stably transformed T0 transgenic plants (0.8%) contained replaced fragments. The presence of the expected recombination sites was further confirmed by sequencing. Therefore, we successfully established a gene deletion/replacement system in stably transformed plants that can potentially be utilized to introduce genes of interest for targeted crop improvement.
Publication