Person: Sharma, A.R.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Sharma
First Name
A.R.
Name
Sharma, A.R.
ORCID ID
0000-0002-7932-34993 results
Search Results
Now showing 1 - 3 of 3
- Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security(Nature Publishing Group, 2018) Singh, S.; Vikram, P.; Sehgal, D.; Burgueño, J.; Sharma, A.R.; Singh, S.K.; Sansaloni, C.; Joynson, R.; Brabbs, T.; Ortiz, C.; Solís Moya, E.; Velu, G.; Gupta, N.; Sidhu, H.S.; Basandrai, A.K.; Basandrai, D.; Ledesma-Ramires, L.; Suaste-Franco, M.P.; Fuentes Dávila, G.; Ireta Moreno, J.; Sonder, K.; Vaibhav K. Singh; Sajid Shokat; Shokat, S.; Mian A. R. Arif; Khalil A. Laghari; Puja Srivastava; Bhavani, S.; Satish Kumar; Pal, D.; Jaiswal, J.P.; Kumar, U.; Harinder K. Chaudhary; Crossa, J.; Payne, T.S.; Imtiaz, M.; Sohu, V.S.; Singh, G.P.; Bains, N.; Hall, A.J.W.; Pixley, K.V.The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios.
Publication - The conservation agriculture roadmap for India: policy brief(ICAR, 2018) Jat, M.L.; Biswas, A.K.; Pathak, H.; Mcdonald, A.; Patra, A.K.; Acharya, C.B.; Sharma, P.C.; Chaudhari, S.K.; Singh, R.; Bhaskar, S.; Sharma, R.; Jat, H.S.; Agarwal, T.; Gathala, M.K.; Pal, S.; Sidhu, H.S.; Yadvinder-Singh; Chhokar, R.S.; Keil, A.; Saharawat, Y.S.; Jat, R.K.; Singh, B.; Malik, R.; Sharma, A.R.; Parihar, C.M.; Das, T.K.; Singh, V.K.; Jat, S.L.; Jha, B.K.; Pratibha, M.; Singh, P.; Singh, R.C.; Choudhary, O.P.; Sharma, S.; Satyanarayana, T.; Sidhu, B.S.; Gehlawat, S.K.; Sen, S.K.; Singh, A.K.; Sikka, A.K.Agriculture remains central to the Indian economy, providing livelihood to the majority of its population. Though Indian agriculture have made spectacular progress for food self-sufficiency, yet growing challenges of large management yield gaps, low water and nutrient efficiency, imbalance and inadequate use of external production inputs, diminishing farm profits, deterioration of soil health and environmental quality coupled with climate risks are major concerns. Feeding a growing population with increasing dietary preferences for resource-intensive food products is a major challenge. Moreover, with no scope for horizontal expansion of farming to produce needed food; improving agronomic productivity and achieving high and stable yields under changing and uncertain climate are important for feeding the growing population. Increasing climatic variability affects most of the biological, physical and chemical processes that drive productivity of agricultural systems. The productivity and stability of agricultural systems depends upon measurable factors and processes controlled by climate and non-climate drivers of production paradigm. It is therefore vitally important to develop strategies and practices to sustainably increase food production while increasing farm income, protecting natural resources and minimizing environmental footprints.
Publication - Unlocking the genetic diversity of Creole wheats(Nuture Publishing Group, 2016) Vikram, P.; Franco, J.; Burgueño, J.; Huihui Li; Sehgal, D.; Saint Pierre, C.; Ortiz, C.; Sneller, C.; Tattaris, M.; Guzman, C.; Sansaloni, C.; Fuentes Dávila, G.; Reynolds, M.P.; Sonder, K.; Singh, P.K.; Payne, T.S.; Wenzl, P.; Sharma, A.R.; Bains, N.; Singh, G.P.; Crossa, J.; Singh, S.Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.
Publication