Person: Bergvinson, D.J.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Bergvinson
First Name
D.J.
Name
Bergvinson, D.J.
3 results
Search Results
Now showing 1 - 3 of 3
- Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions(Public Library of Science, 2012) Degen, T.; Bakalovic, N.; Bergvinson, D.J.; Turlings, T.C.J.Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate larvae of the fall armyworm Spodoptera frugiperda, and two of its main endoparasitoids, Campoletis sonorensis and Cotesia marginiventris, were released in the plots. Volatiles were collected from equally treated reference plants in the neighbourhood of the experimental field. The cumulative amount of 36 quantified volatile compounds determined for each line was in good accordance with findings from the laboratory; there was an almost 15-fold difference in total emission between the two extreme lines. We found significant differences among the lines with respect to the numbers of armyworms recovered from the plants, their average weight gain and parasitism rates. Average weight of the caterpillars was negatively correlated with the average total amount of volatiles released by the six inbred lines. However, neither total volatile emission nor any specific single compound within the blend could explain the differential parasitism rates among the lines, with the possible exception of (E)-2-hexenal for Campoletis sonorensis and methyl salicylate for Cotesia marginiventris. Herbivore-induced plant volatiles and/or correlates thereof contribute to reducing insect damage of maize plants through direct plant defence and enhanced attraction of parasitoids, alleged indirect defence. The potential to exploit these volatiles for pest control deserves to be further evaluated.
Publication - Testing public Bt maize events for control of stem borers in the first confined field trials in Kenya(Academic Journals, 2011) Mugo, S.N.; Mwimali, M.; Taracha, C.; Songa, J.M.; Gichuki, S.T.; Tende, R.; Karaya, H.; Bergvinson, D.J.; Pellegrineschi, A.; Hoisington, D.A.Transgenic maize (Zea mays L), developed using modified genes from the bacterium Bacillus thuringiensis (Bt), controls stem borers without observable negative effects to humans, livestock or the environment, and is now sown on 134 million hectares globally. Bt maize could contribute to increasing maize production in Kenya. Nine public Bt maize events of cry1Ab and cry1Ba genes were tested in confined field trials site (CFTs) to assess the control of four major Kenyan stem borer species. Leaf damage rating, number of exit holes and tunnel length were scored in the field evaluations. Leaf area consumed and mortality rates among stem borers were scored in the leaf bioassays in a Biosafety Level II laboratory, located at the Kenya Agricultural Research Institute (KARI), National Agricultural Research Laboratories (NARL). Field evaluations showed that Bt maize controlled Chilo partellus with mean damage scores of 1.2 against 2.7 for the non-Bt CML216 control. Laboratory bioassays showed high control for Eldana saccharina and Sesamia calamistis, with mean larval mortality of 64 and 92%, respectively. However, substantial control was not observed for Busseola fusca. These results showed that Bt maize could control three of the four major stem borers in Kenya with mortality records of 52.7% for B. fusca, 62.3% for E. saccharina and 85.8% for S. calamistis. Additional Bt genes need to be sought and tested for effective stem borer control in all maize growing ecologies in Kenya.
Publication - Evaluation of stem borer resistance management strategies for Bt maize in Kenya based on alternative host refugia(Academic Journals, 2011) Mulaa, M.; Bergvinson, D.J.; Mugo, S.N.; Wanyama, J.; Tende, R.; De Groote, H.; Tadele TeferaStem borers are the major insect pests of maize in Kenya. The use of Bacillus thuringiensis (Bt) technology is an effective way of controlling lepidopteran pests. However, the likelihood of development of resistance to the Bt toxins by the target stem borer species is a concern. Forages, sorghum and maize varieties were evaluated for stem borer preference and survivorship in the laboratory and field in four locations in Kenya to identify suitable species and varieties for refugia. The economics of using the different kinds of refugia was also investigated. Vegetation surveys were conducted in 15 districts of Kenya to quantify the area covered by natural refugia. The field and laboratory trials indicated highest egg production, survivorship and more exit holes in all sorghum and maize varieties and some forages. Sorghum, non-Bt Maize, and improved Napier grass varieties Kakamega 1 and Kakamega 2) should be promoted as refugia species in Kenya. Some species and cultivars were identified as cost-effective, flexible, easily adoptable and compatible with farmers? common production practices. Refugia cultivar with multiple uses is expected to give higher pay-offs than one with single use. However, for successful management of a refugia strategy, strict stewardship is required from appropriate government or community institutions.
Publication