Person: Kishii, M.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Kishii
First Name
M.
Name
Kishii, M.
ORCID ID
0000-0002-3646-38542 results
Search Results
Now showing 1 - 2 of 2
- An update of recent use of Aegilops species in wheat breeding(Frontiers, 2019) Kishii, M.Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Publication - Synthetic hexaploid wheat: yesterday, today, and tomorrow(Elsevier, 2018) Aili Li; Liu Dengcai; Wuyun Yang; Kishii, M.; Long MaoIn recent years, wheat yield per hectare appears to have reached a plateau, leading to concerns for future food security with an increasing world population. Since its invention, synthetic hexaploid wheat (SHW) has been shown to be an effective genetic resource for transferring agronomically important genes from wild relatives to common wheat. It provides new sources for yield potential, drought tolerance, disease resistance, and nutrient-use efficiency when bred conventionally with modern wheat varieties. SHW is becoming more and more important for modern wheat breeding. Here, we review the current status of SHW generation, study, and application, with a particular focus on its contribution to wheat breeding. We also briefly introduce the most recent progress in our understanding of the molecular mechanisms for growth vigor in SHW. Advances in new technologies have made the complete wheat reference genome available, which offers a promising future for the study and applications of SHW in wheat improvement that are essential to meet global food demand.
Publication