Person:
Dagne Wegary Gissa

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Dagne Wegary Gissa
First Name
Name
Dagne Wegary Gissa

Search Results

Now showing 1 - 2 of 2
  • Chapter 7. Fast-tracking the development and dissemination of a drought-tolerant maize variety in Ethiopia in response to the risks of climate change
    (The Climate-Smart Agriculture Papers, 2019) Tadesse, B.; Azmach, G.; Keno, T.; Chibsa, T.; Beyene, A.D.; Demissie, G.; Dagne Wegary Gissa; Wolde, L.; Chere, A.T.; Regasa, M.W.
    Climate change projections suggest increased frequency of drought in many parts of sub-Saharan Africa (SSA). The replacement of old varieties of maize with new drought-tolerant (DT) varieties will be crucial to respond to the future risk of drought, as it already is today. The first group of locally developed maize hybrids in Ethiopia—BH140, BH660 and BH540—were commercialised between 1988 and 1995, but were not selected for drought tolerance. Among these, BH660 remained the most popular and widely grown maize variety in the Ethiopian maize belt between 2000 and 2010, accounting for nearly 50% of maize area under improved seed. A new DT hybrid, BH661, with better agronomic performances under optimum and random drought than BH660, was identified and released in 2011. In 2016, 9000 tonnes of certified seed—enough to plant 360,000 ha—was produced and marketed. The concerted effort of breeders and seed producers as well as governmental and non-governmental extension workers drove the development, release and rapid adoption of BH661 contributing to food and income security of more than 300,000 households by mitigating the effects of climate change in Ethiopia. The success of BH661 is a valuable and timely case study for breeders, seed companies, extension agents, regulatory bodies and policy-makers striving to develop and disseminate new DT varieties in sub-Saharan Africa.
    Publication
  • Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments
    (Elsevier, 2018) Tesfaye, K.; Kruseman, G.; Cairns, J.E.; Zaman-Allah, M.; Dagne Wegary Gissa; Zaidi, P.; Boote, K.; Rahut, D.B.; Erenstein, O.
    Climate change and population growth pose great challenges to the food security of the millions of people who grow maize in the already fragile agricultural systems in tropical environments. There is an urgent need for maize varieties that are both drought and heat tolerant given the already prevailing drought and heat stress levels in many tropical environments, which are set to exacerbate with climate change. In this study, the crop growth simulation model for maize (CERES-Maize) was used to quantify the impact of climate change on maize and the potential benefits of incorporating drought and heat tolerance into the commonly grown (benchmark) maize varieties at six sites in Eastern and Southern Africa and one site in South Asia. Simulation results indicate that climate change will have a negative impact on maize yield at all the sites studied but the degree of the impact varies with location, level of warming and rainfall changes. Combined hotter and drier climate change scenarios (involving increases in warming with a reduction in rainfall) resulted in greater average simulated maize yield reduction (21, 33 and 50% under 1, 2 and 4 °C warming, respectively) than hotter only climate change scenarios (11, 21 and 41%, respectively). Incorporating drought, heat and combined drought & heat tolerance into benchmark varieties increased simulated maize yield under both the baseline and future climates. The average simulated benefit from combined drought & heat tolerance was at least twice that of heat or drought tolerance and it increased with the increase in warming levels. The magnitude of the simulated benefits from drought tolerance, heat tolerance and combined drought & heat tolerance and potential acceptability of the varieties by farmers varied across sites and climate scenarios indicating the need for proper targeting of varieties where they fit best and benefit most. It is concluded that incorporating drought and heat tolerance into maize germplasm has the potential to offset predicted yield losses and sustain maize productivity under climate change in vulnerable sites.
    Publication