Person: Yue Jin
Loading...
Email Address
Birth Date
5 results
Search Results
Now showing 1 - 5 of 5
- Field resistance to wheat stem rust in durum wheat accessions deposited at the USDA National Small Grains Collection(CSSA, 2021) Olivera Firpo, P.D.; Worku Denbel Bulbula; Badebo, A.; Bockelman, H.; Edae, E.A.; Yue Jin
Publication - Mapping and validation of stem rust resistance loci in spring wheat line CI 14275(Frontiers, 2021) Kosgey, Z.C.; Edae, E.A.; Dill-Macky, R.; Yue Jin; Worku Denbel Bulbula; Gemechu, A.; Macharia, G.; Bhavani, S.; Randhawa, M.S.; Rouse, M.N.
Publication - Identification of seedling resistance to stem rust in advanced wheat lines and varieties from Pakistan(CSSA, 2020) Rehman, M.U.; Gale, S.; Brown-Guedira, G.; Yue Jin; Marshall, D.; Whitcher, L.W.; Williamson, S.; Rouse, M.N.; Ahmad, J.; Ahmad, G.; Shah, I.A.; Mehboob Ali Sial; Rauf, Y.; Rattu, A.; Mirza, J.I.; Ward, R.W.; Nadeem, M.; Ullah, G.; Imtiaz, M.
Publication - Characterization of Ethiopian wheat germplasm for resistance to four Puccinia graminis f. sp. tritici races facilitated by single-race nurseries(American Phytopathological Society (APS), 2019) Kotu, B.H.; Girma, B.; Tadesse, Z.; Edae, E.A.; Olivera Firpo, P.D.; Hailu, E.; Worku Denbel Bulbula; Abeyo Bekele Geleta; Badebo, A.; Cisar, G.; Brown-Guedira, G.; Gale, S.; Yue Jin; Rouse, M.N.In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminisf. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance.
Publication - Genetic loci conditioning adult plant resistance to the Ug99 Race group and seedling resistance to races TRTTF and TTTTF of the stem rust pathogen in wheat landrace CItr 15026(American Phytopathological Society (APS), 2017) Babiker, E.M.; Gordon, T.; Bonman, J.M.; Shiaoman Chao; Rouse, M.N.; Yue Jin; Newcomb, M.; Wanyera, R.; Bhavani, S.Wheat landrace CItr 15026 previously showed adult plant resistance (APR) to the Ug99 stem rust race group in Kenya and seedling resistance to Puccinia graminis f. sp. tritici races QFCSC, TTTTF, and TRTTF. CItr 15026 was crossed to susceptible accessions LMPG-6 and Red Bobs, and 180 double haploid (DH) lines and 140 recombinant inbred lines (RIL), respectively, were developed. The 90K wheat iSelect single-nucleotide polymorphism platform was used to genotype the parents and populations. Parents and 180 DH lines were evaluated in the field in Kenya for three seasons. A major quantitative trait locus (QTL) for APR was consistently detected on chromosome arm 6AS. This QTL was further detected in the RIL population screened in Kenya for one season. Parents, F1, and the two populations were tested as seedlings against races TRTTF and TTTTF. In addition, the DH population was tested against race QFCSC. Goodness-of-fit tests indicated that the TRTTF resistance in CItr 15026 was controlled by two complementary genes whereas the TTTTF and QFCSC resistance was conditioned by one dominant gene. The TRTTF resistance loci mapped to chromosome arms 6AS and 6DS, whereas the TTTTF and QFCSC resistance locus mapped to the same region on 6DS as the TRTTF resistance. The APR identified in CItr 15026 should be useful in developing cultivars with durable stem rust resistance.
Publication