Person: Yue Jin
Loading...
Email Address
Birth Date
10 results
Search Results
Now showing 1 - 10 of 10
- Characterization of Ethiopian wheat germplasm for resistance to four Puccinia graminis f. sp. tritici races facilitated by single-race nurseries(American Phytopathological Society (APS), 2019) Kotu, B.H.; Girma, B.; Tadesse, Z.; Edae, E.A.; Olivera Firpo, P.D.; Hailu, E.; Worku Denbel Bulbula; Abeyo Bekele Geleta; Badebo, A.; Cisar, G.; Brown-Guedira, G.; Gale, S.; Yue Jin; Rouse, M.N.In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminisf. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance.
Publication - Genetic loci conditioning adult plant resistance to the Ug99 Race group and seedling resistance to races TRTTF and TTTTF of the stem rust pathogen in wheat landrace CItr 15026(American Phytopathological Society (APS), 2017) Babiker, E.M.; Gordon, T.; Bonman, J.M.; Shiaoman Chao; Rouse, M.N.; Yue Jin; Newcomb, M.; Wanyera, R.; Bhavani, S.Wheat landrace CItr 15026 previously showed adult plant resistance (APR) to the Ug99 stem rust race group in Kenya and seedling resistance to Puccinia graminis f. sp. tritici races QFCSC, TTTTF, and TRTTF. CItr 15026 was crossed to susceptible accessions LMPG-6 and Red Bobs, and 180 double haploid (DH) lines and 140 recombinant inbred lines (RIL), respectively, were developed. The 90K wheat iSelect single-nucleotide polymorphism platform was used to genotype the parents and populations. Parents and 180 DH lines were evaluated in the field in Kenya for three seasons. A major quantitative trait locus (QTL) for APR was consistently detected on chromosome arm 6AS. This QTL was further detected in the RIL population screened in Kenya for one season. Parents, F1, and the two populations were tested as seedlings against races TRTTF and TTTTF. In addition, the DH population was tested against race QFCSC. Goodness-of-fit tests indicated that the TRTTF resistance in CItr 15026 was controlled by two complementary genes whereas the TTTTF and QFCSC resistance was conditioned by one dominant gene. The TRTTF resistance loci mapped to chromosome arms 6AS and 6DS, whereas the TTTTF and QFCSC resistance locus mapped to the same region on 6DS as the TRTTF resistance. The APR identified in CItr 15026 should be useful in developing cultivars with durable stem rust resistance.
Publication - Nested association mapping of stem rust resistance in wheat using genotyping by sequencing(Public Library of Science, 2016) Bajgain, P.; Rouse, M.N.; Tsilo, T.J.; Macharia, G.; Bhavani, S.; Yue Jin; Anderson, J.We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% – 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar markertrait association studies in other plant species.
Publication - Kenyan Isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: virulence to SrTmp in the Ug99 race group and implications for breeding programs(American Phytopathological Society (APS), 2016) Newcomb, M.; Olivera Firpo, P.D.; Rouse, M.N.; Szabo, L.J.; Johnson, J.W.; Gale, S.; Luster, D.G.; Wanyera, R.; Macharia, G.; Bhavani, S.; Hodson, D.P.; Patpour, M.; Hovmoller, M.S.; Fetch, T.; Yue JinFrequent emergence of new variants in the Puccinia graminis f. sp. tritici Ug99 race group in Kenya has made pathogen survey a priority. We analyzed 140 isolates from 78 P. graminis f. sp. tritici samples collected in Kenya between 2008 and 2014 and identified six races, including three not detected prior to 2013. Genotypic analysis of 20 isolates from 2013 and 2014 collections showed that the new races TTHST, TTKTK, and TTKTT belong to the Ug99 race group. International advanced breeding lines were evaluated against an isolate of TTKTT (Sr31, Sr24, and SrTmp virulence) at the seedling stage. From 169 advanced lines from Kenya, 23% of lines with resistance to races TTKSK and TTKST were susceptible to TTKTT and, from two North American regional nurseries, 44 and 91% of resistant lines were susceptible. Three lines with combined resistance genes were developed to facilitate pathogen monitoring and race identification. These results indicate the increasing virulence and variability in the Kenyan P. graminis f. sp. tritici population and reveal vulnerabilities of elite germplasm to new races.
Publication - Specificity of a rust resistance suppressor on 7DL in the spring wheat cultivar Canthatch(American Phytopathological Society (APS), 2015) Talajoor, M.; Yue Jin; Anmin Wan; Xianming Chen; Bhavani, S.; Tabe, L.; Lagudah, E.; Li HuangThe spring wheat ‘Canthatch’ has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.
Publication - Molecular mapping and validation of SrND643: a new wheat gene for resistance to the stem rust pathogen Ug99 race group(American Phytopathological Society (APS), 2015) Basnet, B.R.; Singh, S.; Lopez-Vera, E.E.; Huerta-Espino, J.; Bhavani, S.; Yue Jin; Rouse, M.N.; Singh, R.P.This study reports the identification of a new gene conferring resistance to the Ug99 lineage of races of Puccinia graminis f. sp. tritici in wheat (Triticum aestivum L.). Because the virulent races of stem rust pathogen continue to pose a serious threat in global wheat production, identification and molecular characterization of new resistance genes remains of utmost important to enhance resistance diversity and durability in wheat germplasm. Advanced wheat breeding line ‘ND643/2*Weebill1’ carries a stem rust resistance gene, temporarily designated as SrND643, effective against the Ug99 group of P. graminis f. sp. tritici races at both seedling and adult growth stages. This study was conducted to map the chromosomal location of SrND643 and identify closely linked molecular markers to allow its selection in breeding populations. In total, 123 recombinant inbred lines, developed by crossing ND643/2*Weebill1 with susceptible line ‘Cacuke’, were evaluated for stem rust response in field nurseries at Njoro, Kenya, during two growing seasons in 2010, and were genotyped with DNA markers, including Diversity Arrays Technology, simple sequence repeats (SSR), and single-nucleotide polymorphisms. Linkage mapping tagged SrND643 at the distal end of chromosome 4AL, showing close association with SSR markers Xgwm350 (0.5 centimorgans [cM]), Xwmc219 (4.1 cM), and Xwmc776 (2.9 cM). The race specificity of SrND643 is different from that of Sr7a and Sr7b, indicating that the resistance is conferred by a gene at a new locus or by a new allele of Sr7. The flanking markers Xgwm350 and Xwmc219 were predictive of the presence of SrND643 in advanced germplasm, thus validating the map location and their use in marker-assisted selection.
Publication - First Report of the Ug99 race group of Wheat Stem Rust, Puccinia graminis f. sp. tritici, in Egypt in 2014(American Phytopathological Society (APS), 2016) Patpour, M.; Hovmoller, M.S.; Shahin, A.; Newcomb, M.; Olivera Firpo, P.D.; Yue Jin; Luster, D.G.; Hodson, D.P.; Nazari, K.; Azab, M.Since the first detection of race TTKSK (Ug99) of Puccinia graminis f. sp. tritici in Uganda in 1998 (Pretorius et al. 2000), it has been a priority to track its further spread to other wheat growing areas. To date, 10 variants in the Ug99 race group have been detected in 12 countries, i.e., Uganda, Kenya, Ethiopia, Sudan, Tanzania, Eritrea, Rwanda, South Africa, Zimbabwe, Mozambique, Yemen and Iran (Patpour et al. 2015). In the 2014 crop season, the presence of virulence to Sr31 in Egypt was suspected based on preliminary field observations of high infection on sources of Sr31 planted as international stem rust trap nursery at 1) Sakha Agricultural Research Station in Kafrelsheikh (31.094059° N, 30.933899° E), 2) Al-Sharqia (30.601400° N, 31.510383° E), and 3) Nubaria (30.91464° N, 29.95543° E). At Sakha, wheat cv. PBW343 (carrying Sr31) was scored 30MS-S, and the monogenic line Benno Sr31/6*LMPG was scored 20MS-S at Al-Sharqia. Three samples from each of these lines were sent to the Global Rust Reference Center (GRRC, Denmark). At Nubaria, stem rust was observed on wheat cvs. Misr-1, Misr-2, Giza 168 and Giza 171, and infected samples were collected and sent under permit to the Foreign Disease-Weed Science Research Unit (MD, USA). Urediniospores of each sample were recovered on susceptible wheat cv. Morocco and McNair 701. Twenty-three and 11 single pustule isolates were derived and analyzed at GRRC and USDA-ARS Cereals Disease Laboratory, respectively, using 20 North American stem rust differential lines following standard race-typing procedure and infection type (IT) criteria determining virulence and avirulence (Jin et al. 2008). In addition, three supplemental tester lines of Siouxland (carrying Sr24+Sr31), Sisson (carrying Sr31+Sr36), and Triumph 64 (donor of SrTmp) were included to confirm virulence/avirulence to Sr24, Sr31, Sr36, and SrTmp. The experiments were repeated two to three times. Three races in the Ug99 race group were detected; TTKST (four isolates, IT 3+4 for Sr24, Sr31 and cv. Siouxland) from Al-Sharqia, TTKTK (13 isolates, IT 4 for Sr31, SrTmp and cv. Triumph 64) from Sakha, and TTKSK (2 isolates, IT 4 for Sr31) from Nubaria. This is the first confirmation of races in the Ug99 race group in Egypt, thereby extending the geographical distribution of Ug99-related races. Since Egypt may play a role as green-bridge for Puccinia graminis f. sp. tritici between East and North African countries and the wheat belts in the Middle East and Mediterranean region, the rust surveillance efforts should be intensified in affected countries as well as in neighboring regions.
Publication - Emergence of virulence to SrTmp in the Ug99 race group of wheat stem rust, Puccinia graminis f. sp. tritici, in Africa(American Phytopathological Society (APS), 2016) Patpour, M.; Hovmoller, M.S.; Justesen, A.F.; Newcomb, M.; Olivera Firpo, P.D.; Yue Jin; Szabo, L.J.; Shahin, A.; Wanyera, R.; Habarurema, I.; Wobibi, S.; Hodson, D.P.The Ug99 race (TTKSK) of wheat stem rust was first detected in Uganda in 1998 (Pretorius et al. 2000) and since then seven additional variants have been reported, i.e., TTKSF, TTKST, TTTSK, TTKSP, PTKSK, PTKST, and TTKSF+ (Pretorius et al. 2012). In this study, 84 stem rust samples from the 2014 surveys of wheat fields in Africa (Kenya, 9; Uganda, 28; Rwanda, 41; and Egypt, 6) were sent to the Global Rust Reference Center (GRRC, Denmark) for race analysis. Puccinia graminis f. sp. tritici (Pgt) samples were recovered on cv. Morocco, and resulting urediniospores of 53 single-pustule isolates were inoculated onto 20 North American stem rust differential lines using standard procedures (Jin et al. 2008). The pathotyping was repeated in two or three independent experiments. Twelve of the derived isolates were also typed at the USDA-ARS Cereal Disease Laboratory (USA) for an independent confirmation. Among the Kenyan samples, four collected from Njoro (Central Rift, cvs. Robin and Kwale) and two from Ntulumeti and Olgilai (South Rift, cv. Robin), were typed as TTKTK. Race TTKTK was similar to TTKSK except for additional virulence to SrTmp (Infection Type 4). An additional single-pustule isolate derived from one sample from Njoro showed a high infection type on LcSr24Ag and CnsSrTmp, testers for Sr24 and SrTmp, respectively, and was typed as TTKTT. These isolates were also tested on Siouxland (PI 483469, Sr24+Sr31), Sisson (PI 617053, Sr31+Sr36), and Triumph 64 (CI 13679, donor of SrTmp) to confirm their virulence/avirulence combinations to Sr24, Sr31, Sr36, and SrTmp. Race TTKTK was also detected at two locations in Uganda (Rubaya and Muko in Kabale region) and at five locations in Rwanda (Kinigi, Rwerere, Rufungo, Gatebe and Kamenyo). Three isolates derived from stem rust samples collected on cv. PBW343 (carrying Sr31) in Sakha in the Nile Delta region in Egypt were also typed as TTKTK. In addition, DNA from isolates of race TTKTK were analyzed using a diagnostic qPCR assay (Ug99 RG stage-1, Szabo unpublished data), which confirmed that these samples belong to the Ug99 lineage. The identification of SrTmp virulence in the Ug99 race group in several countries in one year emphasizes the relevance of coordinated international surveillance efforts and utilization of diverse sources of resistance to control stem rust in wheat. Further studies are in progress to determine the detailed relationship of the newly emerged races and other Pgt isolates identified in the Ug99 group.
Publication - Phenotypic and genotypic characterization of Race TKTTF of Puccinia graminis f. sp. tritici that caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013–14(American Phytopathological Society (APS), 2015) Olivera Firpo, P.D.; Newcomb, M.; Szabo, L.J.; Rouse, M.N.; Johnson, J.W.; Gale, S.; Luster, D.G.; Hodson, D.P.; Cox, J.A.; Burgin, L.; Hort, M.C.; Gilligan, C.A.; Patpour, M.; Justesen, A.F.; Hovmoller, M.S.; Woldeab, G.; Hailu, E.; Kotu, B.H.; Tadesse, K.; Pumphrey, M.; Singh, R.P.; Yue JinA severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014, with yield losses close to 100% on the most widely grown wheat cultivar, ‘Digalu’. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal was used to identify which regions were most likely to have been infected from postulated sites of initial infection. Based on the analyses of 106 single-pustule isolates derived from these samples, four races of Puccinia graminis f. sp. tritici were identified: TKTTF, TTKSK, RRTTF, and JRCQC. Race TKTTF was found to be the primary cause of the epidemic in the southeastern zones of Bale and Arsi. Isolates of race TKTTF were first identified in samples collected in early October 2013 from West Arsi. It was the sole or predominant race in 31 samples collected from Bale and Arsi zones after the stem rust epidemic was established. Race TTKSK was recovered from 15 samples from Bale and Arsi zones at low frequencies. Genotyping indicated that isolates of race TKTTF belongs to a genetic lineage that is different from the Ug99 race group and is composed of two distinct genetic types. Results from evaluation of selected germplasm indicated that some cultivars and breeding lines resistant to the Ug99 race group are susceptible to race TKTTF. Appearance of race TKTTF and the ensuing epidemic underlines the continuing threats and challenges posed by stem rust not only in East Africa but also to wider-scale wheat production.
Publication - Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control(American Phytopathological Society (APS), 2015) Singh, R.P.; Hodson, D.P.; Yue Jin; Lagudah, E.; Ayliffe, M.A.; Bhavani, S.; Rouse, M.N.; Pretorius, Z.; Szabo, L.J.; Huerta-Espino, J.; Basnet, B.R.; Lan, C.; Hovmoller, M.S.Race Ug99 (TTKSK) of Puccinia graminis f. sp. tritici, detected in Uganda in 1998, has been recognized as a serious threat to food security because it possesses combined virulence to a large number of resistance genes found in current widely grown wheat (Triticum aestivum) varieties and germplasm, leading to its potential for rapid spread and evolution. Since its initial detection, variants of the Ug99 lineage of stem rust have been discovered in Eastern and Southern African countries, Yemen, Iran, and Egypt. To date, eight races belonging to the Ug99 lineage are known. Increased pathogen monitoring activities have led to the identification of other races in Africa and Asia with additional virulence to commercially important resistance genes. This has led to localized but severe stem rust epidemics becoming common once again in East Africa due to the breakdown of race-specific resistance gene SrTmp, which was deployed recently in the ‘Digalu’ and ‘Robin’ varieties in Ethiopia and Kenya, respectively. Enhanced research in the last decade under the umbrella of the Borlaug Global Rust Initiative has identified various race-specific resistance genes that can be utilized, preferably in combinations, to develop resistant varieties. Research and development of improved wheat germplasm with complex adult plant resistance (APR) based on multiple slow-rusting genes has also progressed. Once only the Sr2 gene was known to confer slow rusting APR; now, four more genes—Sr55, Sr56, Sr57, and Sr58—have been characterized and additional quantitative trait loci identified. Cloning of some rust resistance genes opens new perspectives on rust control in the future through the development of multiple resistance gene cassettes. However, at present, disease-surveillance-based chemical control, large-scale deployment of new varieties with multiple race-specific genes or adequate levels of APR, and reducing the cultivation of susceptible varieties in rust hot-spot areas remains the best stem rust management strategy.
Publication