Person:
Jat, R.K.

Loading...
Profile Picture
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Jat
First Name
R.K.
Name
Jat, R.K.

Search Results

Now showing 1 - 8 of 8
  • Farmers’ perspectives as determinants for adoption of conservation agriculture practices in Indo-Gangetic Plains of India
    (Elsevier, 2022) Mishra, A.K.; Shinjo, H.; Jat, H.S.; Jat, M.L.; Jat, R.K.; Funakawa, S.; Sutaliya, J.M.
    Publication
  • The optimization of conservation agriculture practices requires attention to location-specific performance: Evidence from large scale gridded simulations across South Asia
    (Elsevier, 2022) Tianning Zhang; Wei Xiong; Sapkota, T.; Jat, M.L.; Montes, C.; Krupnik, T.J.; Jat, R.K.; Karki, S.; Nayak, H.S.; Faisal, A.; Jat, H.S.
    Publication
  • A compendium of key climate smart agriculture practices in intensive cereal based systems of South Asia
    (CIMMYT, 2020) Jat, M.L.; Jat, H.S.; Agarwal, T.; Bijarniya, D.; Kakraliya Suresh Kumar; Choudhary, K.M.; Kalvaniya, K.C.; Gupta, N.; Kumar, M.; Singh, L.K.; Kumar, Y.; Jat, R.K.; Sharma, P.C.; Sidhu, H.S.; Choudhary, M.; Datta, A.; Shirsath, P.B.; Lopez-Ridaura, S.
    Publication
  • Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions
    (Nature Publishing Group, 2021) Sapkota, T.; Jat, M.L.; Dharamvir Singh Rana; Khatri-Chhetri, A.; Jat, H.S.; Bijarniya, D.; Sutaliya, J.M.; Kumar, M.; Singh, L.K.; Jat, R.K.; Kalvaniya, K.C.; Prasad, G.; Sidhu, H.S.; Rai, M.; Satyanarayana, T.; Majumdar, K.
    Publication
  • The conservation agriculture roadmap for India: policy brief
    (ICAR, 2018) Jat, M.L.; Biswas, A.K.; Pathak, H.; Mcdonald, A.; Patra, A.K.; Acharya, C.B.; Sharma, P.C.; Chaudhari, S.K.; Singh, R.; Bhaskar, S.; Sharma, R.; Jat, H.S.; Agarwal, T.; Gathala, M.K.; Pal, S.; Sidhu, H.S.; Yadvinder-Singh; Chhokar, R.S.; Keil, A.; Saharawat, Y.S.; Jat, R.K.; Singh, B.; Malik, R.; Sharma, A.R.; Parihar, C.M.; Das, T.K.; Singh, V.K.; Jat, S.L.; Jha, B.K.; Pratibha, M.; Singh, P.; Singh, R.C.; Choudhary, O.P.; Sharma, S.; Satyanarayana, T.; Sidhu, B.S.; Gehlawat, S.K.; Sen, S.K.; Singh, A.K.; Sikka, A.K.
    Agriculture remains central to the Indian economy, providing livelihood to the majority of its population. Though Indian agriculture have made spectacular progress for food self-sufficiency, yet growing challenges of large management yield gaps, low water and nutrient efficiency, imbalance and inadequate use of external production inputs, diminishing farm profits, deterioration of soil health and environmental quality coupled with climate risks are major concerns. Feeding a growing population with increasing dietary preferences for resource-intensive food products is a major challenge. Moreover, with no scope for horizontal expansion of farming to produce needed food; improving agronomic productivity and achieving high and stable yields under changing and uncertain climate are important for feeding the growing population. Increasing climatic variability affects most of the biological, physical and chemical processes that drive productivity of agricultural systems. The productivity and stability of agricultural systems depends upon measurable factors and processes controlled by climate and non-climate drivers of production paradigm. It is therefore vitally important to develop strategies and practices to sustainably increase food production while increasing farm income, protecting natural resources and minimizing environmental footprints.
    Publication
  • Predicting yield and stability analysis of wheat under different crop management systems across agro-ecosystems in India
    (Scientific Research Publishing Inc., 2017) Jat, M.L.; Jat, R.K.; Singh, P.; Jat, S.L.; Sidhu, H.S.; Jat, H.S.; Bijarniya, D.; Parihar, C.M.; Gupta, R.K.
    The objectives of the study were as follows: 1) to evaluate the GxExM for wheat genotypes; 2) to predict yield performance and identify high stable wheat genotypes in different management practices; and 3) to make genotype-specific management and high performing genotype recommendations within and across agro-ecological regions. A diverse set of twenty-one genotypes was evaluated over three years (2012, 2013 and 2014) under two levels of crop management practices (CT and ZT) across three agro-ecological regions (BR, MP and PB) of India in replicated trials. Data were analyzed with SASGxE and RGxE programs using SAS and R programming languages, respectively. Across and within a location(s), the pattern of GxExM and GxMxY interactions (respectively) among univariate and multivariate stability statistics, grouping of genotypes in divisive clusters and estimates (with a prediction interval) of genotype varied in management practice CT and ZT. Across locations, the genotypes “Munal” and “HD-2967” were the best performers and high stable in CT and ZT, respectively. Genotypes “HD-2824” and “DPW-621-50”, and “Munal” may serve as diverse parents for developing high quality, climate smart, locally adapted genotypes for BR in CT and ZT, respectively. Genotypes “HD-2932”, “BAZ” and “JW-3288”, and “GW-322” and “HD-2967” are suitable for developing locally adapted stress tolerant genotypes for MP in management practices CT and ZT, respectively. Relatively small GxM and GxExM interactions in PB preclude in making definitive conclusions.
    Publication
  • Greenhouse gas measurement from smallholder production systems: guidelines for static chamber method
    (CIMMYT, 2014) Sapkota, T.; Rai, M.; Singh, L.K.; Gathala, M.K.; Jat, M.L.; Sutaliya, J.M.; Bijarniya, D.; Jat, M.K.; Jat, R.K.; Parihar, C.M.; Kapoor, P.; Jat, H.S.; Dadarwal, R.S.; Sharma, P.C.; Sharma, D.K.
    Renewed interest in quantifying greenhouse gas emissions from soil has led to development and application of multitude of techniques. But, chamber-based flux measurement technique is most common and frequently used method for GHG flux measurement in smallholder production systems. Despite the apparent conceptual simplicity of chamber-based methods, chamber design, deployment, and data analyses can have marked effects on the quality of the flux data derived from chamber-based measurement. This also have implications on making comparisons of GHGs emissions from the studies by various researchers even within similar cropping systems and management practices. Therefore, harmonization of GHGs emission studies by chamber based method is necessary. This synthesis provides standard guidelines to scientists involved in GHG quantification by using chamber based methods as well as to facilitate inter study comparison. As any methodology or protocol, chamber methodology has also gone rigorous modification, refinement and improvement over time. Further, type of materials used, dimension, place and time of deployment, sampling time and frequency and analysis method differs slightly from location to location based on the systems being studied, resources availability and so on. Efforts have been made to summarize minimum requirement but also highlighting the need of site-specific consideration. Adoption of harmonized methods that is sensitive and unbiased will result into less error and allows accurate interpolation and extrapolation over time and space.
    Publication
  • Operational manual for turbo happy seeder: technology for managing crop residues with environmental stewardship
    (CIMMYT, 2013) Jat, M.L.; Kapil; Kamboj, B.R.; Sidhu, H.S.; Singh, M.; Bana, A.; Bishnoi, D.K.; Gathala, M.K.; Saharawat, Y.S.; Kumar, V.; Kumar, A.; Jat, H.S.; Jat, R.K.; Sharma, P.C.; Sharma, R.; Singh, R.; Sapkota, T.; Malik, R.; Gupta, R.K.
    Multiple challenges associated with plough based conventional production practices that include deteriorating natural resources, declining factor productivity, yield plateau, shortages of water & labour and escalating costs of production inputs coupled with emerging challenges of climate change both in irrigated intensive systems as well as low intensity rainfed ecologies are the major threat to food security of South Asia (Jat et al, 2009; Ladha et al, 2009; Chauhan et al, 2012). Water and labour scarcity and timeliness of farming operations specially crop establishment under the emerging climatic uncertainties are becoming major concerns of farming all across farmer typologies, production systems and ecologies in the region (Chauhan et al, 2012). In many parts of South Asia, over-exploitation and poor management of groundwater has led to declining water table and negative environmental impacts. Conventional tillage based flooded rice receiving the largest amount of fresh water compared to any other crop is the major contributor to the problems of declining groundwater table ranging from 0.1– 1.0 m year-1 specially in north-west India and increasing energy use and costs. The problem has further been intensified with the unavailability of labour in time, and multi-fold increase in labour costs. Fragmented land holdings and nucleus farm families further exacerbates the problem of availability of farm labour. Potential solutions to address these issues include a shift from intensive tillage based practices to conservation agriculture (CA) based crop management systems (Saharawat et al, 2010; Jat et al, 2012; Gathala et al, 2013). Direct drilling (seeding/planting with zero tillage technology) is one such practice that potentially addresses the issues of labor, energy, water, soil health etc (Malik et al 2005; Gupta and Sayre, 2007; Jat et al, 2009; Ladha et al, 2009; Gathala et al, 2011; Jat et al, 2013) and adaptations to climatic variability (Jat et al, 2009; Malik et al, 2013). One of the key elements of CA is rational soil cover with organics (crop residues, cover crops etc) has greater relevance not only in terms of managing the agricultural waste but particularly for eliminating burning, improving soil health, conserve water, help in adaptation to and mitigating of climate change effects. Globally, annual production of crop residues is estimated at 3440 million tonnes of which large quantities are not managed properly. In India alone, more than 140 million tonnes of crop residues are disposed of by burning each year. In rice-wheat system of the IGP of South Asia, the disposal of rice residues is one of the major challenges due to poor quality for fodder, bioconversion, and engineering applications. In most combine harvested rice fields of western IGP, the rice residues are burnt before planting of wheat. The field burning of crop residues is a major contributor to poor air quality (particulates, greenhouse gases), human respiratory ailments, and the death of beneficial soil fauna and micro-organisms. During burning of crop residues around 80% of carbon is lost as CO2 and a small fraction is evolved as CO. Burning involving incomplete combustion can also be a source of net emissions of many greenhouse gases including CO, CH4, SO2 and N2O. Crop residue burning accounts 6.6 million tonnes of CO2 equivalent emission annually in India (INCCA, 2010). Apart from loss of carbon, up to 80% loss of N and S, 25% of P and 21% of K occurs during burning of crop residues (Ponnamperuma, 1984; Yadvinder-Singh et al., 2010). For managing residues of combine harvested crops and field (loose as well as anchored) as surface mulch and realize multiple benefits of improve crop yields, conserve soil moisture, saving of irrigation, buffer soil temperature, improve SOC, adapt to terminal heat effects in addition to environmental benefits through eliminating burning, ‘Turbo Happy Seeder’, is now available, which is capable of direct drilling (ZT) into heavy surface residue loads in a single operation. Many of the farmers in India and elsewhere have started using Turbo Happy Seeder for residue management. However, one of the major constraints in large scale adoption of this technology as well as sub-optimal use efficiency of planter is the lack of skills/knowledge on operation, calibration and maintenance of the machinery. There are different field situation specific adjustments needed before the use of the machine in the field. These adjustments include proper seeding depth, fertilizer rate and the seed rate etc as per the crop and field conditions to realize the potential benefits of the technology. There are several machinery manufacturers who supply these planters but the operational manuals are not available for making adjustments, calibrations under local conditions. In absence of the proper operational guidelines and protocols for efficient use of this machine by the farmers, service providers, extension agents, many a times the desirable results are not achieved and even contradictory results are observed. This results in slow down the adoption rates of the technology. Also, in absence of simple guidelines for maintenance of the machine, the farmers/service providers need to make huge investments on repairing at the start of the season. Therefore, we attempted to develop an operational manual to provide simple guidelines for calibration, operation, maintenance and troubleshooting for efficient use of turbo happy seeder by the range of stakeholders including farmers, service providers, extension agents and researchers.
    Publication