Person: Macharia, G.
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Macharia
First Name
G.
Name
Macharia, G.
7 results
Search Results
Now showing 1 - 7 of 7
- Genotype x environment interaction: trade-offs between the agronomic performance and stability of durum (Triticum turgidum) wheat to stem-rust resistance in Kenya(Frontiers Media S.A., 2024) Emmaculate A. Ogutu; Madahana, S. L.; Bhavani, S.; Macharia, G.
Publication - Evaluation of Kenya stem rust observation nursery wheat genotypes for yield and yield components under artificial rust conditions(MDPI, 2021) Madahana, S. L.; Owuoche, J.O.; Oyoo, M.E.; Macharia, G.; Randhawa, M.S.
Publication - Identification of bread wheat genotypes with superior grain yield and agronomic traits through evaluation under rust epiphytotic conditions in Kenya(Nature Publishing Group, 2021) Msundi, E.A.; Owuoche, J.O.; Oyoo, M.E.; Macharia, G.; Singh, R.P.; Randhawa, M.S.
Publication - Mapping and validation of stem rust resistance loci in spring wheat line CI 14275(Frontiers, 2021) Kosgey, Z.C.; Edae, E.A.; Dill-Macky, R.; Yue Jin; Worku Denbel Bulbula; Gemechu, A.; Macharia, G.; Bhavani, S.; Randhawa, M.S.; Rouse, M.N.
Publication - Vulnerability of barley to African pathotypes of Puccinia graminis f. sp. tritici and sources of resistance(American Phytopathological Society (APS), 2017) Steffenson, B.; Case, A.J.; Pretorius, Z.; Coetzee, Vicky; Kloppers, F. J.; Zhou, H.; Chai, Yuan; Wanyera, R.; Macharia, G.; Bhavani, S.; Grando, S.The emergence of widely virulent pathotypes (e.g., TTKSK in the Ug99 race group) of the stem rust pathogen (Puccinia graminis f. sp. tritici) in Africa threatens wheat production on a global scale. Although intensive research efforts have been advanced to address this threat in wheat, few studies have been conducted on barley, even though pathotypes such as TTKSK are known to attack the crop. The main objectives of this study were to assess the vulnerability of barley to pathotype TTKSK and identify possible sources of resistance. From seedling evaluations of more than 1,924 diverse cultivated barley accessions to pathotype TTKSK, more than 95% (1,844) were found susceptible. A similar high frequency (910 of 934 = 97.4%) of susceptibility was found for the wild progenitor (Hordeum vulgare subsp. spontaneum) of cultivated barley. Additionally, 55 barley lines with characterized or putative introgressions from various wild Hordeum spp. were also tested against pathotype TTKSK but none was found resistant. In total, more than 96% of the 2,913 Hordeum accessions tested were susceptible as seedlings, indicating the extreme vulnerability of the crop to the African pathotypes of P. graminis f. sp. tritici. In total, 32 (1.7% of accessions evaluated) and 13 (1.4%) cultivated and wild barley accessions, respectively, exhibited consistently highly resistant to moderately resistant reactions across all experiments. Molecular assays were conducted on these resistant accessions to determine whether they carried rpg4/Rpg5, the only gene complex known to be highly effective against pathotype TTKSK in barley. Twelve of the 32 (37.5%) resistant cultivated accessions and 11 of the 13 (84.6%) resistant wild barley accessions tested positive for a functional Rpg5 gene, highlighting the narrow genetic base of resistance in Hordeum spp. Other resistant accessions lacking the rpg4/Rpg5 complex were discovered in the evaluated germplasm and may possess useful resistance genes. Combining rpg4/Rpg5 with resistance genes from these other sources should provide more durable resistance against the array of different virulence types in the Ug99 race group.
Publication - Nested association mapping of stem rust resistance in wheat using genotyping by sequencing(Public Library of Science, 2016) Bajgain, P.; Rouse, M.N.; Tsilo, T.J.; Macharia, G.; Bhavani, S.; Yue Jin; Anderson, J.We combined the recently developed genotyping by sequencing (GBS) method with joint mapping (also known as nested association mapping) to dissect and understand the genetic architecture controlling stem rust resistance in wheat (Triticum aestivum). Ten stem rust resistant wheat varieties were crossed to the susceptible line LMPG-6 to generate F6 recombinant inbred lines. The recombinant inbred line populations were phenotyped in Kenya, South Africa, and St. Paul, Minnesota, USA. By joint mapping of the 10 populations, we identified 59 minor and medium-effect QTL (explained phenotypic variance range of 1% – 20%) on 20 chromosomes that contributed towards adult plant resistance to North American Pgt races as well as the highly virulent Ug99 race group. Fifteen of the 59 QTL were detected in multiple environments. No epistatic relationship was detected among the QTL. While these numerous small- to medium-effect QTL are shared among the families, the founder parents were found to have different allelic effects for the QTL. Fourteen QTL identified by joint mapping were also detected in single-population mapping. As these QTL were mapped using SNP markers with known locations on the physical chromosomes, the genomic regions identified with QTL could be explored more in depth to discover candidate genes for stem rust resistance. The use of GBS-derived de novo SNPs in mapping resistance to stem rust shown in this study could be used as a model to conduct similar markertrait association studies in other plant species.
Publication - Kenyan Isolates of Puccinia graminis f. sp. tritici from 2008 to 2014: virulence to SrTmp in the Ug99 race group and implications for breeding programs(American Phytopathological Society (APS), 2016) Newcomb, M.; Olivera Firpo, P.D.; Rouse, M.N.; Szabo, L.J.; Johnson, J.W.; Gale, S.; Luster, D.G.; Wanyera, R.; Macharia, G.; Bhavani, S.; Hodson, D.P.; Patpour, M.; Hovmoller, M.S.; Fetch, T.; Yue JinFrequent emergence of new variants in the Puccinia graminis f. sp. tritici Ug99 race group in Kenya has made pathogen survey a priority. We analyzed 140 isolates from 78 P. graminis f. sp. tritici samples collected in Kenya between 2008 and 2014 and identified six races, including three not detected prior to 2013. Genotypic analysis of 20 isolates from 2013 and 2014 collections showed that the new races TTHST, TTKTK, and TTKTT belong to the Ug99 race group. International advanced breeding lines were evaluated against an isolate of TTKTT (Sr31, Sr24, and SrTmp virulence) at the seedling stage. From 169 advanced lines from Kenya, 23% of lines with resistance to races TTKSK and TTKST were susceptible to TTKTT and, from two North American regional nurseries, 44 and 91% of resistant lines were susceptible. Three lines with combined resistance genes were developed to facilitate pathogen monitoring and race identification. These results indicate the increasing virulence and variability in the Kenyan P. graminis f. sp. tritici population and reveal vulnerabilities of elite germplasm to new races.
Publication